2008

Farmacocinética do tramadol administrado pela via intravenosa e intramuscular em cadelas submetidas a ovário - salpingo - histerectomia

http://producao.usp.br/handle/BDPI/2316

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo
Pharmacokinetics of tramadol administered by intravenous and intramuscular routes to female dogs submitted to ovariohysterectomy

Altamir Benedito de SOUSA
Augusto César Dias dos SANTOS
Jorge Camilo FLORIO
Helenice de Souza SPINOSA

1 - Laboratório de Farmacologia e Toxicologia do Departamento de Patologia da Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo, São Paulo-SP

Abstract

The objective of the present study was to implant a method using a sensitive and specific system, and validate the whole analytical method to obtain an efficient tool for analyses of tramadol in plasma dogs, and to evaluate the pharmacokinetics of tramadol following intravenous (i.v.) and intramuscular (i.m.) administration of this drug in females dogs submitted to castration. The pharmacokinetics of tramadol were examined following i.v. or i.m. tramadol administration to five female dogs in each group submitted to ovariohysterectomy (dosage=2 mg/kg). In relation to intravenous administration, the half-time for the distribution process (t1/2d = 0.18 ± 0.12 h); the total body clearance was 0.60 ± 0.50 L/h/kg, half-life of elimination (t1/2b) was 1.24 ± 0.69 h. Statistically differences between parameters obtained after i.v. and i.m. was significant only to AUC0–∞: 3362.07 ± 1008 and 1604.55 ± 960.02 (ng.h/mL), respectively. The F was 48.00 ± 43.30 %. The assay for tramadol described has been demonstrated to meet all requirements for clinical PK studies. In particular, the method has satisfactory specificity, linearity, accuracy and precision range over the concentration examined.

Key words: Tramadol. Castration. Dogs. Pharmacokinetics.

Introduction

Tramadol hydrochloride, (1RS, 2RS)-[(dimethylamin) methyl]-1-(3-methoxyphenyl) cyclohexanol HCl, is a centrally acting opioid analgesic in widespread human clinical use. It is a synthetic analogue of codeine, but has a relatively low affinity for opiate receptors. Tramadol has been used for postoperative analgesia following orthopedic surgery and major gynecologic surgeries in addition to nonsurgical conditions in humans.6-8

Tramadol is well absorbed and extensively metabolized after oral administration in human beings, and its metabolites are excreted primarily in the urine.5 Unchanged tramadol and a total of twenty four metabolites, consisting of sixteen phase I metabolites and eight conjugates (seven glucuronides, one sulfate), were isolated in the urine of dogs and rats.7 Minimum effective plasma concentration in human beings for tramadol and O-desmethyltramadol, an active metabolite, have been reported to be 298 ± 171-590 ± 410 and 39.6 ± 29.5 – 84 ± 34 ng/mL, respectively in postoperative human patients.4-8

At “Veterinary Hospital of University of São Paulo”, tramadol has been used as analgesic after ovariohysterectomy (castration) of female dogs. Therefore, there is a lack of pharmacokinetics data of tramadol in this animal specie by intramuscular (i.m.) route of administration. Thus, the objective of the present work was to: (i) implant a method using a sensitive and specific system, and validate the whole analytical method to obtain an efficient tool for analyses of tramadol in plasma dogs, and (ii) evaluate the pharmacokinetics (PKs) of tramadol following intravenous (i.v.) and
intramuscular (i.m.) administration of this drug in females dogs submitted to castration.

Material and Method

Ten adult mixed breed female dogs were enrolled in this study between March and December 2005. The mean age was 2.75 years old (range: 1 – 6 years) and the mean body weight was 28.89 kg (range: 15 – 55.7 kg). All animals were considered healthy, based on physical examination, complete blood count, plasma biochemistry profile and urinalysis. All procedures related to this study were performed in accordance with The Institutional Animal Care and Use Committee at Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo.

The dogs were anaesthetized prior to and during ovariohysterectomy surgery with acepromazine, propofol and isoflurane. After the last stitch, each the dogs were randomly allocated in one of the two groups and administered a single dose of tramadol HCl commercial injection (Cristália, Brazil) (2 mg of tramadol per kg of body weight), i.v. via jugular vein or i.m. injected deep into semimembranous muscle.

A jugular catheter was placed in the right jugular vein prior to surgery. Blood samples, 10 mL per sample, were collected in tubes containing sodium heparin as anticoagulant and centrifuged at 2000 g for 10 min. The plasma was decanted, labeled, frozen at - 80 ºC until the assays were performed within 60 days of collection. This period is inferior to that established by Gan et al. 9 which is stable for more than 1 year when stored at - 20 ºC. Samples were collected immediately before tramadol administration (0) and at 10, 20, 30, 45 minutes and 1.00, 1.50, 2.00, 3.00, 4.00, 5.00, 6.00 hours after tramadol administration.

Stock solutions of tramadol were prepared monthly by dissolving 11.38 mg of tramadol hydrochloride (Sigma®, Germany) in 100 mL of methanol (100 μg/mL) and kept stored at 4ºC. Standard curve for plasma analysis were prepared by fortifying pooled fresh canine plasma with stock solution of tramadol hydrochloride to produce a concentration range from 10 to 2000 ng/mL. The fortified calibration samples were processed and prepared exactly as described bellow for the incurred plasma samples. Tramadol concentrations for the calibration curve were: 10, 50, 125, 250, 500, 1000 and 2000 ng/mL. These working solutions were made by further dilution of the stock solutions in methanol and they were prepared fresh daily. Deionized water was produced by a Milli-Q Millipore Water System (Millipore, MA, USA).

Intra-assay precision and accuracy were determined by measuring five replicates of each of three standard concentration (100, 750 and 1500 ng/mL) prepared in fresh dog plasma and then stored. Interassay precision and accuracy were estimated by assaying three plasma concentrations on four different days. Recovery was estimated by comparing the slope of the standard curves for extract plasma with that for the corresponding unextracted standards.

Plasma concentrations of tramadol were analyzed by high-performance liquid chromatography (HPLC model LC-10AD with UV-VIS spectrophotometric detector model SPD-10AV, Shimadzu, Analytical Instruments Division, Kyoto, Japan) at Laboratório de Farmacologia from Departamento de Patologia da Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo. The HPLC method was based on previously published method 9,10,11 with modifications made to improve the efficiency of the method. For the analyses, frozen dog plasma samples were left on the bench to thaw naturally and were vortexed prior to their use. Plasma extraction was accomplished with liquid-liquid extraction. Briefly, to the plasma was added 5 drops of 0.1 M sodium hydroxide prior to the extraction. The solution was thoroughly vortexed. Then, 4 mL of ethyl acetate: hexane (1:4) (HPLC grade, Merck, Darmstadt, Germany) was added into the plasma and vortexed for 1.5 min. Afterward, it was subjected to centrifugation.

at 3500 g for 15 min. The organic layer was transferred into Cahn’s tubes. The tubes were then passed through a stream of nitrogen for drying (15 min) and 50 ml of the mobile phase was added for reconstitution before injection to the HPLC system. The analytical column was a RP-18 with particle size of 5 μm maintained at 55°C (Shimadzu, Maryland, USA). The mobile phase was constituted of 70% 0.01 M phosphate buffer adjusted to a pH of 5.9 with phosphoric acid (both of analytical reagent-grade from Merck, Darmstadt, Germany) with 0.1% triethylamine and 30% acetonitrile (HPLC grade, Merck Darmstadt, Germany). The UV detector was set to an excitation wavelength of 218 nm. The volume of each injection was 10 μL. Retention time for tramadol was 9.13 min and rate flow 1.2 mL/min.

Data analysis

Individual tramadol concentration vs. time curves was analyzed by non linear least square regression analysis using GraphPad Prism (1999). Choice of appropriate pharmacokinetic model was prepared on the basis of the lowest weighted sum of squares and lowest Akaike’s information criterion value for the individual data 12.

Following i.v. administration the final pharmacokinetic model fit the data was a two-compartment open model with first-order elimination from the central compartment in all the animals (Eqn 1):

$$C(t) = A e^{-\alpha t} + B e^{-\beta t}$$ (1)

where C(t) (ng/mL) represents tramadol plasma concentration at time t; A and B (ng/mL) are the concentration extrapolated to time 0 of the first and second phase of tramadol plasma and α and β (1/h) are the distribution and elimination slopes, respectively.

Plasma tramadol distribution and elimination half-lives, $t_{1/2d}$ and $t_{1/2e}$, respectively, were calculated by Eqns 2 and 3:

$$t_{1/2d} = 0.693/\alpha$$ (2)

$$t_{1/2e} = 0.693/\beta$$ (3)

Area under the plasma curve from 0 to infinity $\langle \text{AUC}_{0-\infty} \rangle$ and area under the first moment curve from 0 to infinity $\langle \text{AUMC}_{0-\infty} \rangle$ were calculated by the linear trapezoidal method with extrapolation to infinity. The extrapolated area was estimated by Eqn 4 and 5:

$$\text{AUC}_{0-\infty} = C_{last}/\beta$$ (4)

$$\text{AUMC}_{0-\infty} = (t_{last} \times C_{last}/\beta) + C_{last}/k_{el}$$ (5)

In which C_{last} is the last measured concentration, t is the time of C_{last}, and k_{el} was the elimination constant.

Total body clearance (Cl_T) was determined by Eqn (6):

$$Cl_T = \text{dose}/ \text{AUC}_{0-\infty}$$ (6)

Mean residence time (MRT) was determined by Eqn (7):

$$MRT = \text{AUC}_{0-\infty}/ \text{AUMC}_{0-\infty}$$ (7)

The apparent volume of distribution area was calculated by Eqn 8:

$$V_{d(area)} = \text{dose}/ (\text{AUC}_{0-\infty} \times \beta)$$ (8)

The volume of central compartment was calculated by Eqn 9:

$$V_1 = \text{dose}/ C_{p_0}$$ (9)

Where $C_{p_0} = A+B$

The micro constants were calculated by Eqn 10-12:

$$k_{21} = (\alpha B + A\beta)/A + B$$ (10)

$$k_{el} = \alpha\beta/k_{21}$$ (11)

$$k_{12} = \alpha + \beta - k_{21} - k_{el}$$ (12)

Compartmental analysis parameters
were calculated from equations published elsewhere. They are presented in table 1.

Tramadol plasma disposition curves after i.m. administration, were analyzed following the same procedure as used for i.v. analysis. Peak concentrations (C_{max}) of tramadol in blood and the time of peak concentration (T_{max}) were obtained directly from the experimental data without interpolation. Systemic bioavailability (F) of tramadol was calculated from noncompartmental parameters using Eqn (13):

$$F = \left(\frac{\text{AUC}_{0-\infty \text{ i.m.}}}{\text{AUC}_{0-\infty \text{ i.v.}}} \right) \times 100 \quad (13)$$

Variance analysis (ANOVA) followed by Unpaired t test with Welch correction was used to analyze data from pharmacokinetic parameters. The results were presented as the mean with their standard deviation. All analyses were realized using the software GraphPad Instat and the figure by using GraphPad Prism. In all experiments, $P<0.05$ was the criterion for statistical significance.

Results

The linear concentration range for tramadol analysis was 10 to > 2000 ng/mL ($n=7$) ($r^2 > 0.999$). The limit of detection and quantification were found to be, respectively, 10 ng/mL and 50 ng/mL. The recoveries at 100, 750 and 1500 ng/mL were 87.5%, 87.7% and 86.5%, respectively.

Table 1 - Mean ± SD values for tramadol pharmacokinetic variables following intravenous (i.v.) and intramuscular (2 mg/kg) tramadol HCl administration to five adult female dogs, in each group, after ovariohysterectomy. Plasma concentration of tramadol was measured by high-performance liquid chromatography (HPLC).

<table>
<thead>
<tr>
<th>Variable</th>
<th>i.v. route (mean ± SD)</th>
<th>i.m. route (mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α (1/h)</td>
<td>3.78 ± 2.21</td>
<td>NA</td>
</tr>
<tr>
<td>β (1/h)</td>
<td>0.56 ± 0.36</td>
<td>NA</td>
</tr>
<tr>
<td>A (ng/mL)</td>
<td>4800.00 ± 2000.00</td>
<td>NA</td>
</tr>
<tr>
<td>$\text{AUC}_{0-\infty \text{ i.v.}}$ (ng.h/mL)</td>
<td>$3362.07 ± 1008.60^*$</td>
<td>1604.55 ± 960.02</td>
</tr>
<tr>
<td>$\text{AUMC}_{0-\infty \text{ i.v.}}$ (ng.h/mL)</td>
<td>3621.39 ± 2107.09</td>
<td>4300.83 ± 2627.00</td>
</tr>
<tr>
<td>B (ng/mL)</td>
<td>1200.00 ± 586.00</td>
<td>NA</td>
</tr>
<tr>
<td>C_0 (ng/mL)</td>
<td>6000.00 ± 3600.12</td>
<td>NA</td>
</tr>
<tr>
<td>CL_{T} (L/h/kg)</td>
<td>0.60 ± 0.50</td>
<td>NA</td>
</tr>
<tr>
<td>CL_{T}/F(L/h/kg)</td>
<td>NA</td>
<td>0.59 ± 0.38</td>
</tr>
<tr>
<td>C_{max} (ng/mL)</td>
<td>NA</td>
<td>625.50 ± 24.99</td>
</tr>
<tr>
<td>$%F$</td>
<td>NA</td>
<td>48.00 ± 43.30</td>
</tr>
<tr>
<td>k_{a}</td>
<td>NA</td>
<td>0.64 ± 0.41</td>
</tr>
<tr>
<td>k_{12} (1/h)</td>
<td>1.38 ± 0.78</td>
<td>NA</td>
</tr>
<tr>
<td>k_{21} (1/h)</td>
<td>1.20 ± 0.65</td>
<td>NA</td>
</tr>
<tr>
<td>k_{el} (1/h)</td>
<td>1.77 ± 0.49</td>
<td>NA</td>
</tr>
<tr>
<td>MAT (h)</td>
<td>NA</td>
<td>1.60 ± 0.97</td>
</tr>
<tr>
<td>MRT (h)</td>
<td>1.08 ± 0.63</td>
<td>2.70 ± 1.50</td>
</tr>
<tr>
<td>$t_{1/2b}$ (h)</td>
<td>1.24 ± 0.69</td>
<td>1.82 ± 1.01</td>
</tr>
<tr>
<td>$t_{1/2a}$ (h)</td>
<td>NA</td>
<td>1.08 ± 0.62</td>
</tr>
<tr>
<td>$t_{1/2e}$ (h)</td>
<td>0.18 ± 0.12</td>
<td>NA</td>
</tr>
<tr>
<td>T_{max} (h)</td>
<td>NA</td>
<td>0.75 ± 0.25</td>
</tr>
<tr>
<td>V_d (L/kg)</td>
<td>1.06 ± 0.53</td>
<td>NA</td>
</tr>
<tr>
<td>V_{d1} (L/kg)</td>
<td>0.33 ± 0.21</td>
<td>NA</td>
</tr>
</tbody>
</table>

*Difference from i.v. and i.m. groups statistically significant, P<0.05.

Abbreviations: NA, not applicable; α = distribution slope; β = elimination slope; A = intercept for the distribution phase; $\text{AUC}_{0-\infty \text{ i.v.}}$ = under the curve from time 0 to infinity; $\text{AUMC}_{0-\infty \text{ i.v.}}$ = area under the first moment curve from 0 to infinity; B = intercept for the elimination phase; C_0 = concentration at time 0; CL_{T} = total body clearance; C_{max} = peak plasma concentration; F = systemic bioavailability; ka = absorption rate constant; k_{12} = rate of movement from compartment 1 to 2; k_{21} = rate of movement from compartment 2 to 1; k_{el} = rate of elimination; MAT = mean absorption time; MRT = mean resident time; $t_{1/2b}$ = elimination half-life; $t_{1/2a}$ = distribution half-life; T_{max} = time of peak concentration; V_d = apparent volume of distribution of the area; V_{d1} = apparent volume of the central compartment central.
and inter-day precision values for quality control samples were 2.2-3.2 and 2.8-3.3% coefficient of variation (CV), respectively. In terms of stability, no significant degradation of tramadol was observed under any of the storage conditions evaluated. There were no interfering peaks from control plasma matrix, hemolyzed or not, and the presence of acepromazine, propofol and isoflurane in the plasma. Mean retention time for tramadol was 9.13 min (Figure 1).

No adverse effects were noted after i.v. or i.m. administration of tramadol HCl at 2.0 mg/kg. All twelve dogs appeared mildly sedated after administration. Blood levels of tramadol administrated by i.v. and i.m are presented in figure 2 and the PK data are presented in table 1.

Blood samples taken from all evaluated animals before tramadol administration were found to contain no measurable levels of this drug. On the other hand, they presented high tramadol levels after dosage. By i.m. the highest tramadol concentration occurred at 0.75 ± 0.25 h (625.50 ± 24.99 ng/mL). In both routes these levels were measurable until 6 hours after tramadol administration. Tramadol levels were significantly higher by i.v. than i.m at all time evaluated.

A two-compartment model best fit the plasma concentrations after intravenous tramadol in all dogs. A one-compartment model with first-order input was fit to the plasma tramadol concentrations following i.m administration.

In relation to intravenous administration, tramadol serum concentration rapidly decreased during the first hour postadministration, as reflected by the half-time for the distribution process ($t_{1/2d} = 0.18 ± 0.12$ h). Distribution was wide, with a V_d of 0.33 ± 0.21 L/kg and a V_{area} of 1.06 ± 0.53 L/kg. The k_{12}/k_{21} ratio was 1.15 ± 0.58, indicating that the drug is returning rapidly from distribution sites for elimination from the body. Total body clearance was relatively rapidly (0.60 ± 0.50 L/h/kg). Half-life of

![Figure 1](image-url)
elimination ($t_{1/2b}$) was 1.24 ± 0.69 h and a MRT of 1.08 ± 0.63.

On the other hand, calculated parameters in relation to i.m. administration showed the same median value to the total body clearance (0.59 ± 0.38 L/h/kg); the i.m. absorption was rapid as reflected by the T_{max} (0.75 ± 0.25 h) and $t_{1/2\mathrm{abs}}$ (1.08 ± 0.62 h). Moreover, statistically differences between parameters obtained after i.v. and

![Figure 2 - Plasma concentration (ng/mL) profiles as measured by HPLC in adult female dogs after a single i.v. or i.m. administration of tramadol. Dosage = 2 mg/kg](image_url)
i.m. was significant only in the AUC$_{0-\infty}$: 3362.07 ± 1008.60 and 1604.55 ± 960.02 (ng.h/mL), respectively. The F was 48.00 ± 43.30 %.

Discussion/Conclusion

Our study verified if the HPLC method previously published to measure tramadol in human plasma was also appropriate to the dog plasma because this technique employs equipment and reagents available in our laboratory. The parameters analyzed showed that it is an effective technique with the advantages of being rapid, easy to perform and inexpensive.

This method has been successfully applied to the analyses of samples for a PK study in the present experiment which consisted of twelve dogs submitted to anesthesia with propofol, acepromazine and isoflurane and then submitted to castration. The dose of tramadol administered in the present investigation (2.0 mg/kg), in the end of the surgical procedure, was chosen taking into account previous studies in which this dose was verified not to produce the typical adverse effects reported for tramadol and also because this dose generates detectable blood concentrations of the compound in treated animals.

Early studies in 1999 demonstrated the analgesic effects of single-dose intramuscular tramadol 50-100 mg in human. Several studies have confirmed that repeated intramuscular administration of tramadol can provide effective and well tolerated postoperative analgesia comparable to that obtained with morphine, pentazocine and ketorolac. In this way, we elected the i.m and i.v. routes as they are the main routes of drug administration after surgical procedures and also because there isn’t any study comparing these two routes in dogs that received tramadol.

The tramadol plasma concentration vs time data after intravenous administration were best fitted to a two-compartment open model. This conclusion is in agreement with that found in previous studies of tramadol carried out in dogs. An open one-compartment model with first-order absorption best fitted the data obtained after intramuscular administration of tramadol to female dogs.

Mean residence time (MRT) reflects the difference in persistence of the drug in the body after intravenous and intramuscular administration. The prolonged MRT after intramuscular administration compared to the intravenous administration, the clearances being similar, was due to the influence of the absorption phase. Similar results have been reported in dogs that received tramadol per os and intravenous.

It was estimated that about 2% of the absorbed tramadol is excreted unchanged in the urine of dogs and more than 24 metabolites are excreted, which are almost completely eliminated through the kidneys. In healthy humans, the average elimination half-life of tramadol was estimated at 6h, whereas in patients with renal insufficiency the dose must be adjusted according to the clearance renal values. Assuming that the slower the elimination of this substance, the longer the time it will remain in the body, it could be inferred that both i.v. and i.m. dosing should expose the dogs lesser to tramadol than in human beings, as in the present study the elimination half-life of tramadol was 1.24 ± 0.69 and 1.82 ± 1.01, by i.v. and i.m., respectively.

The absorption process was rapid with a T$_{max}$ range: 0.50 - 1.00 h and corroborated by the absorption rate constant (ka) and t$_{1/2abs}$. The C$_{max}$ range: 650.49 – 600.51 ng/mL and the corresponding results after i.m. in humans was C$_{max}$ = 166 (1.24) ng/ml, which was inferior what could be in part be explained by the dose administered to human which was < 1 mg/kg. The F of the drug after i.m. administration at 2 mg/kg b.w. was 48.00 ± 43.30, in the present study. The low F values indicate that the drug was not completely absorbed from i.m. site injection in dogs. In contrast to its pharmacokinetics in humans, Ground et al. and Lintz, Beier and Gerloff founded 92.9 - 105.4%. Thus,
the results reflect the different kinetics between human and dogs.

The volume of distribution area for tramadol was 1.06 ± 0.53 and volume of distribution of central compartment was 0.33 ± 0.21 L/kg, which is consistent with a high tissue affinity. On the other hand, extrapolation of this data should be viewed with caution when considering multidose studies as it has been well determined that many differences exist in biochemical, morphological and functional changes between single and prolonged exposure to drugs.13

In summary, taken as a whole, the present data strongly support that exposition to tramadol was able to raise the levels in the plasma of dogs submitted to castration. The assay for tramadol described has been demonstrated to meet all requirements for clinical PK studies. In particular, the method has satisfactory specificity, linearity, accuracy and precision range over the concentration examined. The results from i.v. and i.m. administration of tramadol reported here provided the PK information for the design of future studies of analgesic efficacy in dogs.

Acknowledgements:
This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq - Brazil) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES - Brazil). Tramadol was donated from Cristália (Brazil).

References
5 TUNCER, S. et al. Adding ketoprofen to intravenous

Farmacocinética do tramadol administrado pela via intravenosa e intramuscular em cadelas submetidas a ovário - salpingo - histerectomia

Resumo
O objetivo do presente estudo foi de implantar um método sensível e específico, e validar toda a metodologia para obter uma ferramenta eficiente para a análise do tramadol em plasma de cadelas, e avaliar a farmacocinética do tramadol após a administração do mesmo pelas vias i.v. e i.m. em cadelas submetidas à castração. A farmacocinética do tramadol foi examinada após a administração do tramadol por ambas as vias, em cinco cadelas em cada grupo submetidas à ovário histerectomia (dose = 2 mg/kg). Em relação à administração intravenosa, a meta-vida de eliminação (t1/2b) foi de 1,24 ± 0,69 h. Encontrou-se diferenças significativas somente nos parâmetros AUC0–∞: 3362,07 ± 1008 and 1604,55 ± 960.02 (ng.h/mL) pelas vias i.v. e i.m. respectivamente. O F foi de 48,00 ± 43,30 %. O estudo descrito neste artigo demonstrou atingir todas as exigências para os estudos clínicos em farmacocinética. Especificamente, o método apresentou especificidade, linearidade, exatidão e precisão satisfatórias no intervalo de concentrações examinadas.

Palavras-chave:
Tramadol, Castração, Cães, Farmacocinética.

References

INSTRUÇÕES AOS AUTORES

INSTRUÇÕES AOS AUTORES

Notas

1 - Limitar-se ao máximo de três páginas digitadas, e 2 - Ser escrita em língua portuguesa ou em língua inglesa, 3 - Usar somente nomenclaturas oficiais e abreviaturas consagradas, não empregando abreviaturas no título do artigo. 4 - Não devem ser subdivididos em seções separadas (Introdução, Materiais e Métodos etc.), mas devem apresentar, obrigatoriamente, dois resumos, com palavras-chave, conforme descrito na apresentação de Artigo completo, além de referências.

Artigo de revisão

Só poderão ser publicados por especialistas de renome a convite da Comissão Editorial. Não devem ser subdivididos em seções separadas (Introdução, Materiais e Métodos etc.), mas devem apresentar, obrigatoriamente, dois resumos, com palavras-chave, conforme descrito na apresentação de Artigo completo, além de referências.

Apresentação dos trabalhos

1 - Digitação: original em CD, digitalmente identificado com o título do artigo e nome (dos) autor(es) e três cópias impressas, inclusive suas tabelas e referências; deve ser digitado, obrigatoriamente, em formato A4 (21,0 x 29,7cm), espaço duplo, em um só face de papel, margens de 2,5cm, fonte Times New Roman tamanho 10 e numeração consecutiva das páginas. Ilustrações e legendas devem ser relacionadas em folhas separadas. O texto dos artigos deve ser apresentado de acordo com o modelo do texto Microsoft Word. 2 - Página de rosto: elemento obrigatório, onde deve conter o título do artigo, nome(s) do(s) autor(es) e instituição de origem. Observar que unicamente nesta página consta a identificação dos autores, para o devido sigilo e imparcialidade. No rodapé da página deve-se mencionar o artigo completo (inclusive e-mail) do autor para correspondência. Se o artigo for subvencionado, mencionar a instituição que o patrocino, assim como os agradecimentos; 3 - Tabelas: devem ser numeradas em algarismos arábicos e encabeçadas pelo título, segundo de local e data. Na montagem das tabelas seguir: IBGE. Normas de apresentação tabular. 3 ed. Rio de Janeiro: IBGE, 1993. O limite de tabelas por trabalho é de cinco. Em casos excepcionais, conhecida a opinião da Comissão Editorial, este número poderá ser ultrapassado. No texto devem ser numéricas, e indicadas pela palavra Tabela (por extenso). 4 - Ilustrações (fotografias, gráficos, quadros, desenhos ou esquemas): devem ser numeradas consecutivamente com algarismos arábicos e citadas como figuras no texto. As fotografias devem ser identificadas somente com o título do artigo, além de conter no verso a indicação de seu correto posicionamento. Fotos fornecidas em papel fotográfico devem ter ótima resolução, em CD com a extensão .TIF e resolução mínima de 300 dpi’s. As legendas de ilustrações coloridas devem estar referenciadas somente por setas, símbolos e pontos quando publicadas em preto e branco. Gráficos, desenhos e esquemas devem ser inseridos em CD, impressos em folha à parte identificada com o título do artigo, além das respectivas legendas. Todas as ilustrações devem ser fornecidas em três vias. Os gráficos devem trazer sempre os valores numéricos que lhes deram origem. Desenhos e esquemas devem apresentar boa qualidade técnica e artística. Aceitar-se-á um número máximo de nove ilustrações por artigo, supondo-se a seguinte distribuição: três fotografias, três gráficos e três desenhos/esquemas. Acima deste limite, as despesas com reprodução correrão conta do autor. Ilustrações coloridas, independentemente do número, serão cobradas. No texto devem ser indicadas pela palavra Figura (por extensos). Indicar junto ao título da ilustração o local e data. 5 - Referências: devem ser numeradas, ao final do artigo, de forma consecutiva de acordo com a ordem em que forem sendo citadas no texto. Os títulos de periódicos devem ser mencionados de maneira uniforme, de acordo com a sigla correspondente. As referências seguem à norma da Associação Brasileira de Normas Técnicas (ABNT) NBR 6023, que deve ser consultada para outros tipos de documentos aqui não exemplificados.

Exemplos de Apresentação dos Autores nas Referências

Exemplo de livro

Exemplo de artigo diferente para o livro e capítulo

Exemplo de autor para livre e capítulo

Exemplo de tese

Exemplo de evento

Exemplo de livro eletrônico

Exemplos de artigos de periódicos eletrônicos

6 - Citações: utilizar o Sistema Numérico. As citações devem ser feitas por numeral única e consecutiva em sobrecrito, utilizando-se algarismos arábicos, remetendo à lista de referências na mesma ordem em que aparecem no texto. Quando indispensable para a compreensão do texto, combinando(s) sobrenome(s) do(s) autor(es) com a indicação do número. Neste caso, a citação será pelo sobrenome de cada autor ou pelo nome da entidade responsável que aparece na respectiva referência. Quando se tratar de três autores, todos devem ser citados. No caso de mais de três autores, a citação deve ser acompanhada pelo sobrenome do primeiro autor seguido da expressão et al. (sem títico). Se a citação estiver invertida no texto utilizar letras maiúsculas e minúsculas; se estiver entre parênteses utilizar somente letras maiúsculas. Exemplos:

Um autor

Segundo Yanagita ou Bennett (1970)...

Dois autores

Soares e Alves (1999) ou (SOARES; ALVES)...

Três autores

Bennett, ABE e Henrickson (2000) ou (BENNETT; ABE; HENRICKSON)...

Quatro ou mais autores

Vilela, Martens, Bressan e Carvalho (1999) ou Vilela et al. (2001)...

Tarifa de publicação

A tarifa de publicação é de R$ 40,00, por página impressa, será cobrada do autor indicado para correspondência, por ocasião da revisão final do artigo. Se houver necessidade de impressão em cores, as despesas correrão conta do autor.
MISSION AND POLICY

The Brazilian Journal of Veterinary Research and Animal Science is an international and multidisciplinary journal that publishes original scientific articles and reviews in the field of veterinary and animal science. The journal is committed to providing a forum for the dissemination of the latest research findings and advances in the field. It is indexed in several databases and is recognized for its high quality and impact.

INSTRUCTIONS TO AUTHORS

1. **Manuscript Submission**: Manuscripts should be submitted electronically via the journal’s online submission system, following the instructions provided. Authors must ensure that their manuscripts are prepared according to the journal’s guidelines.

2. **Language and Style**: Manuscripts should be written in English or Portuguese, and should follow the journal’s style guidelines. Authors are encouraged to use clear, concise language and to avoid jargon.

3. **Title and Abstract**: Manuscripts should include a title (30-40 words) and an abstract (250 words). The abstract should summarize the research question, methods, results, and conclusions.

4. **Keywords**: Authors should provide 5-8 keywords that accurately reflect the content of the manuscript.

5. **References**: Manuscripts should include a list of references in alphabetical order, following the journal’s citation style. Authors are encouraged to use electronic resources for referencing.

6. **Copyright**: The corresponding author will be responsible for obtaining copyright permission for any material that is not the author’s original work.

7. **Declaration of Conflicts of Interest**: Authors should declare any conflicts of interest that may affect the interpretation of the results or conclusions.

8. **Ethical Approval and Consent for Publication**: If the research involves human or animal subjects, authors must obtain the necessary ethical approval and consent for publication.

9. **Archival and Accessibility**: The journal adheres to open access policies, ensuring that articles are freely available to the public.

10. **Fees**: Authors may be charged a fee for publication, which supports the journal’s operations. The fee is determined by the journal and is based on the type of content and the impact factor.

11. **Review Process**: Manuscripts undergo a rigorous peer review process, ensuring the quality and validity of the research.

12. **Publication**: Accepted manuscripts are published in the journal, and authors receive a proof copy.

13. **Reprints and Permissions**: Authors are entitled to a set number of reprints, and permission is required for the reproduction of figures and tables.

14. **Copyright**: The corresponding author will be granted a copyright license, allowing them to reproduce and distribute the work.

15. **Data Sharing**: Authors are encouraged to share data and materials to enhance the reproducibility and impact of their research.

16. **Ethical Guidelines**: Authors must adhere to ethical guidelines, including those related to animal welfare and human research.

17. **Language and Style**: Manuscripts should be written in English or Portuguese, and should follow the journal’s style guidelines. Authors are encouraged to use clear, concise language and to avoid jargon.

18. **Title and Abstract**: Manuscripts should include a title (30-40 words) and an abstract (250 words). The abstract should summarize the research question, methods, results, and conclusions.

19. **Keywords**: Authors should provide 5-8 keywords that accurately reflect the content of the manuscript.

20. **References**: Manuscripts should include a list of references in alphabetical order, following the journal’s citation style. Authors are encouraged to use electronic resources for referencing.

21. **Copyright**: The corresponding author will be responsible for obtaining copyright permission for any material that is not the author’s original work.

22. **Declaration of Conflicts of Interest**: Authors should declare any conflicts of interest that may affect the interpretation of the results or conclusions.

23. **Ethical Approval and Consent for Publication**: If the research involves human or animal subjects, authors must obtain the necessary ethical approval and consent for publication.

24. **Archival and Accessibility**: The journal adheres to open access policies, ensuring that articles are freely available to the public.

25. **Fees**: Authors may be charged a fee for publication, which supports the journal’s operations. The fee is determined by the journal and is based on the type of content and the impact factor.

27. **Publication**: Accepted manuscripts are published in the journal, and authors receive a proof copy.

28. **Reprints and Permissions**: Authors are entitled to a set number of reprints, and permission is required for the reproduction of figures and tables.

29. **Copyright**: The corresponding author will be granted a copyright license, allowing them to reproduce and distribute the work.

30. **Data Sharing**: Authors are encouraged to share data and materials to enhance the reproducibility and impact of their research.

31. **Ethical Guidelines**: Authors must adhere to ethical guidelines, including those related to animal welfare and human research.

32. **Language and Style**: Manuscripts should be written in English or Portuguese, and should follow the journal’s style guidelines. Authors are encouraged to use clear, concise language and to avoid jargon.

33. **Title and Abstract**: Manuscripts should include a title (30-40 words) and an abstract (250 words). The abstract should summarize the research question, methods, results, and conclusions.

34. **Keywords**: Authors should provide 5-8 keywords that accurately reflect the content of the manuscript.

35. **References**: Manuscripts should include a list of references in alphabetical order, following the journal’s citation style. Authors are encouraged to use electronic resources for referencing.

36. **Copyright**: The corresponding author will be responsible for obtaining copyright permission for any material that is not the author’s original work.

37. **Declaration of Conflicts of Interest**: Authors should declare any conflicts of interest that may affect the interpretation of the results or conclusions.

38. **Ethical Approval and Consent for Publication**: If the research involves human or animal subjects, authors must obtain the necessary ethical approval and consent for publication.

39. **Archival and Accessibility**: The journal adheres to open access policies, ensuring that articles are freely available to the public.

40. **Fees**: Authors may be charged a fee for publication, which supports the journal’s operations. The fee is determined by the journal and is based on the type of content and the impact factor.

41. **Review Process**: Manuscripts undergo a rigorous peer review process, ensuring the quality and validity of the research.

42. **Publication**: Accepted manuscripts are published in the journal, and authors receive a proof copy.

43. **Reprints and Permissions**: Authors are entitled to a set number of reprints, and permission is required for the reproduction of figures and tables.

44. **Copyright**: The corresponding author will be granted a copyright license, allowing them to reproduce and distribute the work.

45. **Data Sharing**: Authors are encouraged to share data and materials to enhance the reproducibility and impact of their research.

46. **Ethical Guidelines**: Authors must adhere to ethical guidelines, including those related to animal welfare and human research.

47. **Language and Style**: Manuscripts should be written in English or Portuguese, and should follow the journal’s style guidelines. Authors are encouraged to use clear, concise language and to avoid jargon.

48. **Title and Abstract**: Manuscripts should include a title (30-40 words) and an abstract (250 words). The abstract should summarize the research question, methods, results, and conclusions.

49. **Keywords**: Authors should provide 5-8 keywords that accurately reflect the content of the manuscript.

50. **References**: Manuscripts should include a list of references in alphabetical order, following the journal’s citation style. Authors are encouraged to use electronic resources for referencing.

51. **Copyright**: The corresponding author will be responsible for obtaining copyright permission for any material that is not the author’s original work.

52. **Declaration of Conflicts of Interest**: Authors should declare any conflicts of interest that may affect the interpretation of the results or conclusions.

53. **Ethical Approval and Consent for Publication**: If the research involves human or animal subjects, authors must obtain the necessary ethical approval and consent for publication.

54. **Archival and Accessibility**: The journal adheres to open access policies, ensuring that articles are freely available to the public.

55. **Fees**: Authors may be charged a fee for publication, which supports the journal’s operations. The fee is determined by the journal and is based on the type of content and the impact factor.

56. **Review Process**: Manuscripts undergo a rigorous peer review process, ensuring the quality and validity of the research.

57. **Publication**: Accepted manuscripts are published in the journal, and authors receive a proof copy.

58. **Reprints and Permissions**: Authors are entitled to a set number of reprints, and permission is required for the reproduction of figures and tables.

59. **Copyright**: The corresponding author will be granted a copyright license, allowing them to reproduce and distribute the work.

60. **Data Sharing**: Authors are encouraged to share data and materials to enhance the reproducibility and impact of their research.

61. **Ethical Guidelines**: Authors must adhere to ethical guidelines, including those related to animal welfare and human research.