Respiratory activity and pigment metabolism in fresh-cut beet roots treated with citric acid

http://producao.usp.br/handle/BDPI/4724

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo
Respiratory activity and pigment metabolism in fresh-cut beet roots treated with citric acid

Ricardo A Kluge¹; Maria Carolina D Vitti¹; Fabiana F Sasaki¹; Angelo P Jacomino²; Celso L Moretti³

¹USP-ESALQ, Depto. Ciências Biológicas, C. Postal 9, 13418-900 Piracicaba-SP; ²USP-ESALQ, Depto. Produção Vegetal; ³Embrapa Hortaliças, C. Postal 218, 70359-970 Brasília-DF; rakluge@esalq.usp.br; mcdvitti@gmail.com; fsasaki@esalq.usp.br; jacomino@esalq.usp.br; moretti@cnph.embrapa.br

ABSTRACT

Beet roots cv. Early Wonder were graded for firmness, color and size, and were peeled inside a cold room (10°C). Roots were then shredded (2 mm thick), sanitized for 6 minutes (NaClO/200 mg L⁻¹), rinsed and centrifuged. Fresh-cut beet roots were then treated for 5 minutes with citric acid in the following concentrations: 0 (control), 500; 1,000; 1,500 and 2,000 mg L⁻¹. The material was centrifuged again, placed in trays, wrapped with PVC plastic film, and stored at 5°C and 85-90% HR for 10 days. Every two days, treatments were analyzed for respiratory activity and betacyanin and betaxanthin contents. The application of citric acid caused the reduction of respiratory rate in the fresh-cut tissue. In the second day of storage, control showed the highest respiratory activity among treatments, reaching around 77 mL CO₂ kg⁻¹ h⁻¹. Citric acid solution dips in a concentration higher than 500 mg L⁻¹ contributed to a decrease in respiratory activity and no peak in CO₂ evolution was observed. There were significant differences among all treatments during the storage period for the contents of betacyanin, which were around 40; 45; 48; 51 and 55 mg 100 g⁻¹ for the fresh-cut material treated with 0; 500; 1,000; 1,500 and 2,000 mg L⁻¹ of citric acid, respectively. Also, levels of betaxanthin were around 25; 29; 33; 35 and 39 mg 100 g⁻¹ for the material treated with 0; 500; 1,000; 1,500 and 2,000 mg L⁻¹ of citric acid, respectively. The application of citric acid after minimal processing apparently have the ability to reduce respiratory rate and the degradation of pigments, which contributes to extend the shelf life of the fresh-cut product.

Keywords: Beta vulgaris L., respiration, betacyanin, betaxanthin, minimal processing.

RESUMO

Atividade respiratória e metabolismo dos pigmentos de beterrabas minimamente processadas tratadas com ácido cítrico

Beterrabas ‘Early Wonder’ foram selecionadas quanto à firmeza, cor e tamanho e descascadas em câmara fria (10°C). As raízes foram cortadas (2 mm de espessura), sanitizadas, enxaguadas e centrifugadas. As beterrabas foram tratadas com ácido cítrico nas concentrações: 0 (controle), 500; 1000; 1500 e 2000 mg L⁻¹. O produto foi novamente centrifugado, colocado em bandejas envolvidas com filme de PVC e armazenado a 5°C e 85-90% de umidade relativa durante 10 dias. A cada dois dias, foram avaliados a atividade respiratória e os teores de betacianina e betaxantina nos tratamentos. A aplicação de ácido cítrico nas diferentes concentrações reduziu a taxa respiratória nos tecidos minimamente processados. No segundo dia de armazenamento, o tratamento controle apresentou a maior atividade respiratória alcançando valores próximos a 77 mL CO₂ kg⁻¹ h⁻¹. A aplicação de ácido cítrico igual ou maior a 500 mg L⁻¹ contribuiu para o decréscimo da atividade respiratória e o pico na evolução de CO₂ não foi observado. Foi verificada diferença significativa entre os tratamentos durante todo o armazenamento para os teores de betacianina, tendo sido observados valores ao redor de 40; 45; 48; 52 e 55 mg 100 g⁻¹ para os produtos tratados com 0; 500; 1,000; 1,500 e 2,000 mg L⁻¹, respectivamente. Os níveis de betaxantina para beterrabas minimamente processadas foram ao redor de 25; 29; 33; 35 e 39 mg 100 g⁻¹ para os tratamentos de 0; 500; 1,000; 1,500 e 2,000 mg L⁻¹, respectivamente. A aplicação de ácido cítrico é sugerida durante o processamento mínimo como forma de reduzir a taxa respiratória e a degradação de pigmentos, contribuindo assim para o aumento da vida de prateleira de produtos minimamente processados.

Palavras-chave: Beta vulgaris L., betalaína, betacianina, betaxantina, processamento mínimo.

(Received for publication on 27 de março de 2008; accepted in October 31, 2008)

During the past few years fresh-cut products have grown rapidly both in the foodservice sector and at the retail level. Focusing consumer convenience, they are prepared and handled aiming at offer a fresh and healthy product (Moretti & Sargent, 2002). The obtaining of fresh-cut products involves many steps such as cleaning, washing, trimming, coring, slicing, shredding, and other related operations (Cantwell, 2000).

Fresh-cut business is an activity showing exponential increase in many countries, especially in large metropolitan areas, such as São Paulo, one of the biggest cities in Brazil, where supermarkets sell around US$ 4 million of fresh-cut products monthly, considering both fruits (54%) and vegetables (46%) (Rojo & Saabor, 2002).

In general, fresh-cut products have a short shelf life, which is mainly due to the mechanical stresses. In the cut surface, cells and membranes are damaged leading to alterations in the whole tissue metabolism. Many authors have observed increasing in carbon dioxide and ethylene evolution (Brecht, 1995; Moretti et al., 2000, 2002a), water loss (Moretti & Sargent, 2000), alterations in flavor and aroma (Moretti et al., 2002b), decline in levels of nutrients such as ascorbate (Gil et al., 2006), development of off-odors
Peroxidase (POD) (Degl'Innocenti et al., 2005), polyphenol oxidase (PPO) and browning, e.g., phenylalanine-ammonia-lyase (PAL) were observed that respiratory activity of fresh-cut carrots was drastic reduced by the addition of citric acid, which is related to the inhibition of phosphofructokinase, which catalyzes the phosphorilation of fructose 6-phosphate into fructose 1,6-bisphosphate, in the glycolitic pathway of the respiratory metabolism.

Among many fruit and vegetable crops that are being processed in Brazil, beet roots are increasing in importance. They are pink-reddish in color due to the presence of a group of pigments named betain, which was misdesignated as anthocyanin due to the presence of nitrogen in their molecule. These pigments were soluble in water and are divided in two groups: betacyanin (related with the red color) and betaxanthin (related with the yellow color). These two groups of pigments are present in beet roots and are involved with the characteristic color of this vegetable crop (Fenema, 1995).

One of the main technological problems found by processors dealing with fresh-cut beet roots is the significant discoloration and dehydration of the minimally processed material. Washing and rinsing operations carried out after slicing have favored the loss of betacyanin and betaxanthin, since these pigments are soluble in water (Nilson, 1970).

The factors mentioned above, the economical importance of this vegetable crop, as well as the lack of information in the consulted literature regarding the study of fresh-cut beet roots focusing pigments degradation, the present work was carried out aiming to study the effects of citric acid in the respiratory activity and in the content of betain in fresh-cut beet roots.

MATERIAL AND METHODS

Beet roots cv. Early Wonder were obtained from a local grower in Piracicaba, São Paulo State, Brazil, and taken to the postharvest laboratory. Roots were graded for firmness, color and size.

Roots were peeled inside a cold chamber (10±1°C) and immersed in cold water (5±0.5°C) for 2 minutes to reduce the abrasion stress. Roots were then shredded (2 mm thick), sanitized for 6 minutes (NaClO/200 mg L⁻¹) in order to reduce the risks of microbiological contamination, and rinsed for 1 minute (3 mg L⁻¹ free chlorine) to remove chlorine in excess. The fresh-cut material was centrifuged at 2,200 rpm for 1 minute to remove the water excess.

Fresh-cut beet roots were then treated for 5 minutes with citric acid in the following concentrations: 0 (control, immersion in water), 500; 1,000; 1,500 and 2,000 mg L⁻¹. The material was centrifuged again in the same conditions mentioned above. Minimally processed beet roots were placed in trays and wrapped with PVC plastic film, 14 mm thick, and stored at 5°C and 85-90% RH for 10 days.

Every two days, the treatments were analyzed for respiratory activity, and betacyanin and betaxanthin contents. For the respiratory activity analysis, 180 g of fresh-cut beet roots were placed in a hermetic sealed jar (0.6 L), which was tightly closed and stored at 5°C for 1 hour. Air samples were taken from the glass jars using a syringe and the respiratory activity was analyzed in a CO₂ analyzer. Betacyanin and betaxanthin were determined according to Kluge et al. (2006). Two grams of the previous frozen samples were ground with 5 mL of distilled water. The homogenate was placed in tablets and centrifuged (15,000 rpm) at 4°C for 40 minutes. One mL of the supernatant was added to 24 mL of distilled water in test tubes. The solution was then homogenized in a Vortex and absorbance was read at 476, 538 and 600 nm.

Calculations were carried out according to the following equations:
\[x = 1,095 (a-c); y = b-z/x; 3.1; \text{ and } z = a-x, \text{ where: } a = \text{ absorbance at 538 nm}; b = \text{ absorbance at 476 nm}; c = \text{ absorbance at 600 nm}; x = \text{ absorbance of betacyanin}; y = \text{ absorbance of betaxanthin}; \text{ and } z = \text{ absorbance of impurities.} \]

Analyses were performed using a completely randomized design, with 30 treatments arranged in a factorial scheme (five concentrations of citric acid and 6 sampling times), with 5 replications. Data were subjected to analysis of variance and the least significance difference (Fisher L.S.D.) procedure was carried out. Differences between any two treatments larger than the sum of two standard deviations were always significant (pd<0.05).

RESULTS AND DISCUSSION

The application of citric acid in different concentrations caused the reduction of CO₂ evolution in the fresh-
In the second day of storage, control showed the highest respiratory activity among treatments, reaching around 77 mL CO₂ kg⁻¹ h⁻¹. After the fourth day of storage, carbon dioxide evolution of the untreated tissue stabilized around 30 mL CO₂ kg⁻¹ h⁻¹, but remained continuously higher than beet root treated with 1,000 to 2,000 mg L⁻¹ of citric acid (Figure 1).

A citric acid application higher than 500 mg L⁻¹ contributed to a decrease in respiratory activity and no peak in CO₂ evolution was observed (Figure 1). After the second day of storage, carbon dioxide evolution stabilized at 25; 18; 10 and 3.5 mL CO₂ kg⁻¹ h⁻¹ for 500, 1,000; 1,500 and 2,000 mg L⁻¹ of citric acid treatment, respectively.

Results are similar to the findings of Kato-Noguchi & Watada (1997) who observed that the respiratory activity of fresh-cut carrots was reduced when citric acid concentration was increased. The peak in CO₂ evolution verified in the untreated material was probably related to the stress occurred by the time of processing, which caused a disruption in cell tissues, allowing respiratory substrates reaction with their respective enzymes. This kind of result in minimally processed beet roots no treated with citric acid was also observed by Vitti et al. (2003). In treated beet roots the stress was reduced as the concentration of citric acid increased. On the other hand, immersion in citric acid solutions or other antioxidant appears to protect the tissue against pigment degradation. As the concentration of the citric acid solution increased, the pigment loss decreased (Figure 2). Salgado (1997) verified that treatments with an antioxidant, such as ascobic acid, increased the stability of betalain in beet roots. The author suggested that 400 mg L⁻¹ was the best concentration to prevent pigment degradation. The combination of citric and ascorbic acids had no synergistic effect in preventing pigment degradation when compared to the application of one antioxidant alone (Attoe & Elbe, 1985).

According to our results, it is suggested that the application of citric acid after minimal processing have the ability of reducing carbon dioxide evolution and minimizing the degradation of pigments, which contributes to extend the shelf life of the fresh-cut product.

ACKNOWLEDGEMENTS

The authors thank to FAPESP (Fundação de Amparo à Pesquisa do estado de São Paulo) for providing financial resource for the execution this experiment (proc. nº 01/00750-2).

REFERENCES

Respiratory activity and pigment metabolism in fresh-cut beet roots treated with citric acid

HortScience 32: 136.

KLUGE RA; COSTA CA; VITTI MC; ONGARELLI MG; JACOMINO AP; MORETTI CL. 2006. Armazenamento refrigeração de beterraba minimamente processada em diferentes tipos de corte. Ciência Rural 36: 263-270.

MORETTI CL; BALDWIN E; SARGENT SA; HUBER DJ. 2002b. Internal bruising alters aroma volatile profiles in tomato fruit tissues.

HortScience 37:378-382

