Differential geometry from a singularity theory viewpoint

http://www.producao.usp.br/handle/BDPI/50103

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo
Differential Geometry from a Singularity Theory Viewpoint
Differential Geometry from a Singularity Theory Viewpoint

Shyuichi Izumiya
Hokkaido University, Japan

Maria del Carmen Romero Fuster
Universitat de València, Spain

Maria Aparecida Soares Ruas
University of São Paulo, Brazil

Farid Tari
University of São Paulo, Brazil

World Scientific
Preface

The geometry of surfaces is a subject that has fascinated many mathematicians and users of mathematics. This book offers a new look at this classical subject, namely from the point of view of singularity theory. Robust geometric features on a surface in the Euclidean 3-space, some of which are detectable by the naked eye, can be captured by certain types of singularities of some functions and mappings on the surface. In fact, the mappings in question come as members of some natural families of mappings on the surface. The singularities of the individual members of these families of mappings measure the contact of the surface with model objects such as lines, circles, planes and spheres.

This book gives a detailed account of the theory of contact between manifolds and its link with the theory of caustics and wavefronts. It then uses the powerful techniques of these theories to deduce geometric information about surfaces immersed in the Euclidean 3, 4 and 5-spaces as well as spacelike surfaces in the Minkowski space-time.

In Chapter 1 we argue the case for using singularity theory to study the extrinsic geometry of submanifolds of Euclidean spaces (or of other spaces). To make the book self-contained, we devote Chapter 2 to introducing basic facts about the extrinsic geometry of submanifolds of Euclidean spaces. Chapter 3 deals with singularities of smooth mappings. We state the results on finite determinacy and versal unfoldings which are fundamental in the study of the geometric families of mappings on surfaces treated in the book. Chapter 4 is about the theory of contact introduced by Mather and developed by Montaldi. In Chapter 5 we recall some basic concepts in symplectic and contact geometry and establish the link between the theory of contact and that of Lagrangian and Legendrian singularities. We apply in Chapters 6, 7 and 8 the singularity theory framework exposed in
the previous chapters to the study of the extrinsic differential geometry of surfaces in the Euclidean 3, 4 and 5-spaces respectively. The codimension of the surface in the ambient space is 1, 2 or 3 and this book shows how some aspects of the geometry of the surface change with its codimension. In Chapter 9 we chose spacelike surfaces in the Minkowski space-time to illustrate how to approach the study of submanifolds in Minkowski spaces using singularity theory. Most of the results in the previous chapters are local in nature. Chapter 10 gives a flavour of global results on closed surfaces using local invariants obtained from the local study of the surfaces in the previous chapters.

The emphasis in this book is on how to apply singularity theory to the study of the extrinsic geometry of surfaces. The methods apply to any smooth submanifolds of higher dimensional Euclidean space as well as to other settings, such as affine, hyperbolic or Minkowski spaces. However, as it is shown in Chapters 6, 7 and 8, each pair \((m, n)\) with \(m\) the dimension of the submanifold and \(n\) of the ambient space needs to be considered separately.

This book is unapologetically biased as it focuses on research results and interests of the authors and their collaborators. We tried to remedy this by including, in the Notes of each chapter, other aspect and studies on the topics in question and as many references as we can. Omissions are inevitable, and we apologise to anyone whose work is unintentionally left out.

Currently, there is a growing and justified interest in the study of the differential geometry of singular submanifolds (such as caustics, wavefronts, images of singular mappings etc) of Euclidean or Minkowski spaces, and of submanifolds with induced (pseudo) metrics changing signature on some subsets of the submanifolds. We hope that this book can be used as a guide to anyone embarking on the study of such objects.

This book has been used (twice so far!) by the last-named author as lecture notes for a post-graduate course at the University of São Paulo, in São Carlos. We thank the following students for their thorough reading of the final draft of the book: Alex Paulo Francisco, Leandro Nery de Oliveira, Lito Edinson Bocanegra Rodríguez, Martín Barajas Sichaca, Mostafa Salarinoghabi and Patrícia Tempesta. Thanks are also due to Catarina Mendes de Jesus for her help with a couple of the book’s figures and to Asahi Tsuchida, Shunichi Honda and Yutaro Kabata for correcting some typos. Most of the results in Chapter 4 are due to James Montaldi. We thank him for allowing us to reproduce some of his proofs in this book.
Preface

We are also very grateful to Masatomo Takahashi for reading the final draft of the book and for his invaluable comments and corrections.

S. Izumiya, M. C. Romero Fuster, M. A. S. Ruas and F. Tari
August, 2015
This page intentionally left blank
Contents

Preface

1. The case for the singularity theory approach
 1.1 Plane curves ... 2
 1.1.1 The evolute of a plane curve 3
 1.1.2 Parallels of a plane curve 5
 1.1.3 The evolute from the singularity theory viewpoint 7
 1.1.4 Parallels from the singularity theory viewpoint .. 10
 1.2 Surfaces in the Euclidean 3-space 11
 1.2.1 The focal set 13
 1.3 Special surfaces in the Euclidean 3-space 14
 1.3.1 Ruled surfaces 15
 1.3.2 Developable surfaces 19
 1.4 Notes .. 21

2. Submanifolds of the Euclidean space
 2.1 Hypersurfaces in \mathbb{R}^{n+1} 23
 2.1.1 The first fundamental form 24
 2.1.2 The shape operator 25
 2.1.3 Totally umbilic hypersurfaces 29
 2.1.4 Parabolic and umbilic points 32
 2.2 Higher codimension submanifolds of \mathbb{R}^{n+r} 36
 2.2.1 Totally ν-umbilic submanifolds 40
 2.2.2 ν-parabolic and ν-umbilic points 41
 2.2.3 The canal hypersurface 41

3. Singularities of germs of smooth mappings 45
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Differential Geometry from a Singularity Theory Viewpoint</td>
</tr>
<tr>
<td>3.1</td>
<td>Germs of smooth mappings</td>
</tr>
<tr>
<td>3.2</td>
<td>Multi-germs of smooth mappings</td>
</tr>
<tr>
<td>3.3</td>
<td>Singularities of germs of smooth mappings</td>
</tr>
<tr>
<td>3.4</td>
<td>The Thom-Boardman symbols</td>
</tr>
<tr>
<td>3.5</td>
<td>Mather’s groups</td>
</tr>
<tr>
<td>3.6</td>
<td>Tangent spaces to the \mathcal{G}-orbits</td>
</tr>
<tr>
<td>3.7</td>
<td>Finite determinacy</td>
</tr>
<tr>
<td>3.8</td>
<td>Versal unfoldings</td>
</tr>
<tr>
<td>3.9</td>
<td>Classification of singularities</td>
</tr>
<tr>
<td>3.9.1</td>
<td>Germs of functions</td>
</tr>
<tr>
<td>3.9.2</td>
<td>Discriminants and bifurcation sets</td>
</tr>
<tr>
<td>3.10</td>
<td>Damon’s geometric subgroups</td>
</tr>
<tr>
<td>3.11</td>
<td>Notes</td>
</tr>
<tr>
<td>4.</td>
<td>Contact between submanifolds of \mathbb{R}^n</td>
</tr>
<tr>
<td>4.1</td>
<td>Contact between submanifolds</td>
</tr>
<tr>
<td>4.2</td>
<td>Genericity</td>
</tr>
<tr>
<td>4.3</td>
<td>The meaning of generic immersions</td>
</tr>
<tr>
<td>4.4</td>
<td>Contact with hyperplanes</td>
</tr>
<tr>
<td>4.5</td>
<td>The family of distance squared functions</td>
</tr>
<tr>
<td>4.6</td>
<td>The family of projections into hyperplanes</td>
</tr>
<tr>
<td>4.7</td>
<td>Notes</td>
</tr>
<tr>
<td>5.</td>
<td>Lagrangian and Legendrian Singularities</td>
</tr>
<tr>
<td>5.1</td>
<td>Symplectic manifolds</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Lagrangian submanifolds and Langrangian maps</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Lagrangian singularities</td>
</tr>
<tr>
<td>5.2</td>
<td>Contact manifolds</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Legendrian submanifolds and Legendrian maps</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Legendrian singularities</td>
</tr>
<tr>
<td>5.3</td>
<td>Graph-like Legendrian submanifolds</td>
</tr>
<tr>
<td>5.4</td>
<td>Versal unfoldings and Morse families of functions</td>
</tr>
<tr>
<td>5.5</td>
<td>Families of functions on hypersurfaces in \mathbb{R}^n</td>
</tr>
<tr>
<td>5.5.1</td>
<td>The family of height functions</td>
</tr>
<tr>
<td>5.5.2</td>
<td>The extended family of height functions</td>
</tr>
<tr>
<td>5.5.3</td>
<td>The family of distance squared functions</td>
</tr>
<tr>
<td>5.6</td>
<td>Contact from the viewpoint of Lagrangian and Legendrian singularities</td>
</tr>
</tbody>
</table>
Contents

5.6.1 Contact of hypersurfaces with hyperplanes ... 128
5.6.2 Contact of hypersurfaces with hyperspheres ... 132
5.6.3 Contact of submanifolds with hyperplanes ... 134

6. Surfaces in the Euclidean 3-space 139
6.1 First and second fundamental forms ... 139
6.2 Surfaces in Monge form ... 145
6.3 Contact with planes ... 146
6.4 Contact with lines ... 159
6.4.1 Contour generators and apparent contours ... 160
6.4.2 The generic singularities of orthogonal projections 165
6.5 Contact with spheres ... 178
6.6 Robust features of surfaces ... 183
6.6.1 The parabolic curve ... 184
6.6.2 The flecnodal curve ... 186
6.6.3 The ridge curve ... 189
6.6.4 The sub-parabolic curve ... 194
6.7 Notes ... 198

7. Surfaces in the Euclidean 4-space 201
7.1 The curvature ellipse ... 202
7.2 Second order affine properties ... 207
7.2.1 Pencils of quadratic forms ... 211
7.3 Asymptotic directions ... 213
7.4 Surfaces in Monge form ... 218
7.5 Examples of surfaces in \(\mathbb{R}^4 \) ... 219
7.6 Contact with hyperplanes ... 221
7.6.1 The canal hypersurface ... 225
7.6.2 Characterisation of the singularities of the height function ... 229
7.7 Contact with lines ... 232
7.7.1 The geometry of the projections ... 237
7.8 Contact with planes ... 242
7.9 Contact with hyperspheres ... 246
7.10 Notes ... 249

8. Surfaces in the Euclidean 5-space 251
8.1 The second order geometry of surfaces in \(\mathbb{R}^5 \) ... 252
8.2 Contacts with hyperplanes ... 259
8.3 Orthogonal projections onto hyperplanes, 3-spaces and planes ... 267
8.3.1 Contact with lines ... 267
8.3.2 Contact with planes ... 268
8.3.3 Contact with 3-spaces ... 270
8.4 Contacts with hyperspheres ... 272
8.5 Notes ... 277

9. Spacelike surfaces in the Minkowski space-time 281
9.1 Minkowski space-time ... 283
9.1.1 The hyperbolic space and the Poincaré ball model 284
9.2 The lightcone Gauss maps ... 285
9.3 The normalised lightcone Gauss map ... 291
9.4 Marginally trapped surfaces ... 292
9.5 The family of lightcone height functions ... 293
9.6 The Lagrangian viewpoint ... 296
9.7 The lightcone pedal and the extended lightcone height function: the Legendrian viewpoint ... 300
9.8 Special cases of spacelike surfaces ... 304
9.8.1 Surfaces in Euclidean 3-space ... 305
9.8.2 Spacelike surfaces in de Sitter 3-space ... 305
9.8.3 Spacelike surfaces in Minkowski 3-space ... 306
9.8.4 Surfaces in hyperbolic 3-space ... 307
9.9 Lorentzian distance squared functions ... 309
9.9.1 Lightlike hypersurfaces ... 311
9.9.2 Contact of spacelike surfaces with lightcones ... 313
9.10 Legendrian dualities between pseudo-spheres ... 315
9.11 Spacelike surfaces in the lightcone ... 317
9.11.1 The Lightcone Theorema Egregium ... 320
9.12 Notes ... 325

10. Global viewpoint 329
10.1 Submanifolds of Euclidean space ... 330
10.1.1 Surfaces in \mathbb{R}^3 ... 330
10.1.2 Wavefronts ... 333
10.1.3 Surfaces in \mathbb{R}^4 ... 335
10.1.4 Semeiumblicity ... 337
Contents

10.2 Spacelike submanifolds of Minkowski space-time 339
10.3 Notes . 343

Bibliography

Index