Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Central limit asymptotics for shifts of finite type (1990)

  • Authors:
  • USP affiliated authors: COELHO FILHO, ZAQUEU NOGUEIRA - IME
  • USP Schools: IME
  • DOI: 10.1007/bf02937307
  • Subjects: MATEMÁTICA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/bf02937307 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Israel Journal of Mathematics

    ISSN: 0021-2172

    Citescore - 2017: 0.77

    SJR - 2017: 1.253

    SNIP - 2017: 1.163


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      COELHO FILHO, Z N; PARRY, W. Central limit asymptotics for shifts of finite type. Israel Journal of Mathematics, Jerusalem, v. 69, n. 2 , p. 235-49, 1990. DOI: 10.1007/bf02937307.
    • APA

      Coelho Filho, Z. N., & Parry, W. (1990). Central limit asymptotics for shifts of finite type. Israel Journal of Mathematics, 69( 2 ), 235-49. doi:10.1007/bf02937307
    • NLM

      Coelho Filho ZN, Parry W. Central limit asymptotics for shifts of finite type. Israel Journal of Mathematics. 1990 ;69( 2 ): 235-49.
    • Vancouver

      Coelho Filho ZN, Parry W. Central limit asymptotics for shifts of finite type. Israel Journal of Mathematics. 1990 ;69( 2 ): 235-49.

    Referências citadas na obra
    [Bo] R. Bowen,Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Math.470, Springer-Verlag, Berlin, 1975.
    [DP] M. Denker and W. Philipp,Approximation by Brownian motion for Gibbs measures and flows under a function, Ergodic Theory & Dynamical Systems4 (1984), 541–552.
    [Fe] W. Feller,An Introduction to Probability Theory and its Applications, Vol. 2, 2nd ed., John Wiley & Sons, New York, 1971.
    [Ka] T. Kato,Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1980.
    [Ke] G. Keller,Generalised bounded variation and applications to piecewise monotonic transformations. Z. Wahrscheinlichkeitstheor. Verw. Geb.69 (1985), 461–478.
    [La1] S. Lalley,Ruelle's Perron-Frobenius theorem and central limit theorem for additive functionals of one-dimensional Gibbs states, Proc. Conf. in honour of H. Robbins, 1985.
    [La2] S. Lalley,Distribution of periodic orbits of symbolic and Axiom A flows, Adv. Appl. Math.8 (1987), 154–193.
    [Po1] M. Pollicott,A complex Ruelle-Perron-Frobenius theorem and two counterexamples, Ergodic Theory & Dynamical Systems4 (1984), 135–146.
    [Po2] M. Pollicott,Prime orbit theorem error terms for locally constant suspensions, preprint (1985).
    [Ra] M. Ratner,The central limit theorem for geodesic flows on n-dimensional manifolds of negative curvature. Isr. J. Math.16 (1973), 181–197.
    [R-E] J. Rousseau-Egèle,Un théorème de la limite locale pour une classe de transformations dilatantes et monotones par morceaux. Ann. of Prob.11 (1983), 772–788.
    [Ru] D. Ruelle,Thermodynamic Formalism, Addison-Wesley, Reading, Mass., 1978.
    [Sc] W. Schmidt,Diophantine Approximation, Springer Lecture Notes in Math.785, Springer-Verlag, Berlin, 1980.
    [Si] Y. G. Sinai,The central limit theorem for geodesic flows on manifolds of constant negative curvature, Soviet Math. Dokl.1 (1960), 983–987.
    [Wo] S. Wong,A central limit theorem for piecewise monotonic mappings of the interval, Ann. of Prob.7 (1979), 500–514.