Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Conformal measures and Hausdorff dimension for infinitely renormalizable quadratic polynomials (1999)

  • Authors:
  • USP affiliated authors: PRADO, EDUARDO ALMEIDA - IME
  • USP Schools: IME
  • DOI: 10.1007/bf01235673
  • Subjects: SISTEMAS DINÂMICOS
  • Language: Inglês
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/bf01235673 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Bulletin of the Brazilian Mathematical Society

    ISSN: 0100-3569

    Citescore - 2017: 0

    SJR - 2017: 0

    SNIP - 2017: 0


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      PRADO, Eduardo de Almeida. Conformal measures and Hausdorff dimension for infinitely renormalizable quadratic polynomials. Boletim da Sociedade Brasileira de Matemática[S.l.], v. 30, n. 1, p. 31-52, 1999. DOI: 10.1007/bf01235673.
    • APA

      Prado, E. de A. (1999). Conformal measures and Hausdorff dimension for infinitely renormalizable quadratic polynomials. Boletim da Sociedade Brasileira de Matemática, 30( 1), 31-52. doi:10.1007/bf01235673
    • NLM

      Prado E de A. Conformal measures and Hausdorff dimension for infinitely renormalizable quadratic polynomials. Boletim da Sociedade Brasileira de Matemática. 1999 ; 30( 1): 31-52.
    • Vancouver

      Prado E de A. Conformal measures and Hausdorff dimension for infinitely renormalizable quadratic polynomials. Boletim da Sociedade Brasileira de Matemática. 1999 ; 30( 1): 31-52.

    Referências citadas na obra
    [Bow75] R. Bowen.Equilibrium states and the ergodic theory of Anosov diffeomorphisms, volume 470 ofLecture Notes in Mathematics. Springer-Verlag, 1975.
    [DU91] M. Denker and M. Urba?ski. On Sullivan's conformal measures for rational maps of the Riemann sphere.Nonlinearity, 4, 1991.
    [Hub] J. Hubbard. Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz. InTopological methods in modern, mathematics, A symposium in honor of John Milnor. Publish or Perish.
    [Lyu91] M. Lyubich. On the Lebesgue measure of the Julia set of a quadratic polynomial.IMS@Stony Brook preprint series, (1991/10) 1991.
    [Lyu93] M. Lyubich, Geometry of quadratic polynomials: moduli, rigidity and local connectivity.IMS@Stony Brook preprint series, (1993/9), 1993.
    [Lyu97] M. Lyubich. Dynamics of quadratic polynomials, I-II.Acta Math., 178, (1997).
    [Mil91] J. Milnor. Local connectivity of Julia sets: expository lecturesIMS@Stony Brook preprint series, (1991/10), 1991.
    [Prz93] F. Przyticki Lyapunov characteristic exponents are non-negative.Proc. A. M. S., 119(1), 1993.
    [Prz96] F. Przyticki. Iterations of holomorphic Collet-Eckmann maps: conformal and invariant measures. Preprint.
    [Shi91] M. Shishikura. Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets.IMS@Stony Brook preprint series, (1991/7), 1991.
    [Sul80] D. Sullivan.Conformal dynamics, volume 1007 ofLecture Notes in Mathematics. Springer-Verlag, 1980.
    [Urb] M. Urba?ski. Rational functions with no recurrent critical points.
    [Wal78] P. Walters. Invariant measures and equilibrium states for some mappings which expand distance.Trans. of the A. M. S., 1978.