Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

The Arrival time brachistochrones in general relativity (2002)

  • Authors:
  • USP affiliated authors: PICCIONE, PAOLO - IME
  • USP Schools: IME
  • DOI: 10.1007/bf02922047
  • Subjects: ANÁLISE GLOBAL
  • Language: Inglês
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/bf02922047 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Journal of Geometric Analysis

    ISSN: 1050-6926

    Citescore - 2017: 0.96

    SJR - 2017: 1.497

    SNIP - 2017: 1.147


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      GIANNONI, Fábio; PICCIONE, Paolo. The Arrival time brachistochrones in general relativity. The Journal of Geometric Analysis[S.l.], v. 12, n. 3, p. 375-423, 2002. DOI: 10.1007/bf02922047.
    • APA

      Giannoni, F., & Piccione, P. (2002). The Arrival time brachistochrones in general relativity. The Journal of Geometric Analysis, 12( 3), 375-423. doi:10.1007/bf02922047
    • NLM

      Giannoni F, Piccione P. The Arrival time brachistochrones in general relativity. The Journal of Geometric Analysis. 2002 ; 12( 3): 375-423.
    • Vancouver

      Giannoni F, Piccione P. The Arrival time brachistochrones in general relativity. The Journal of Geometric Analysis. 2002 ; 12( 3): 375-423.

    Referências citadas na obra
    Beem, J.K., Ehrlich, P.E., and Easley, K.L.Global Lorentzian Geometry, Marcel-Dekker, Inc., New York and Basel, (1996).
    Brezis, H.Analyse Fonctionelle, Masson, Paris, (1983).
    Fadell, E. and Husseini, S. Category of loop spaces of open subsets in Euclidean spaces, Nonlinear Analysis: T.M.A.17, 1153–1161, (1991).
    Fortunate, D., Giannoni, F., and Masiello, A. A Fermat principle for stationary space-times and applications to light rays,J. Geom. Phys.,515, 1–30, (1994).
    Giannoni, F., Masiello, A., and Piccione, P. A timelike extension of Fermat’s principle in general relativity and applications,Calculus of Variations and PDE,6, 263–283, (1998).
    Giannoni, F., Perlick, V., Piccione, P., and Verderesi, J.A. Time minimizing curves in Lorentzian geometry, Proceedings of the 10th School of Differential Geometry, Belo Horizonte, (MG, Brazil), July (1998), Matemática Contemporânea,17, 193–222, (1999).
    Giannoni, F. and Piccione, P. An intrinsic approach to the geodesical connectedness of stationary Lorentzian manifolds,Commun. An. Geom.,7(1), 157–197, (1999).
    Giannoni, F. and Piccione, P. An existence theory for relativistic brachistochrones in stationary spacetimes,J. Math. Phys.,39(11), 6137–6152, (1998).
    Giannoni, F., Piccione, P., and Tausk, D.V. Morse theory for the travel time brachistochrone in stationary spacetimes,Discrete and Continuous Dynamical Systems A 8, vol.3, 697–724, (2002).
    Giannoni, F., Piccione, P., and Verderesi, J.A. An approach to the relativistic brachistochrone problem by subRiemannian geometry,J. Math. Phys.,38(12), 6367–6381, (1997).
    Goldstein, F. and Bender, C.M. Relativistic brachistochrone,J. Math. Phys.,27, 507–511, (1985).
    Hawking, S.W. and Ellis, G.F.The Large Scale Structure of Space-Time, Cambridge University Press, London, New York, (1973).
    Kamath, G. The brachistochrone in almost flat space,J. Math. Phys.,29, 2268–2272, (1988).
    Kovner, I. Fermat principle in arbitrary gravitational fields,Astrophysical J.,351, 114–120, (1990).
    Lang, S.Differential Manifolds, Springer-Verlag, Berlin, (1985).
    Masiello, A.Variational Methods in Lorentzian Geometry, Pitman Research Notes in Mathematics,309, Longman, London, (1994).
    O’Neill, B.Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, (1983).
    Palais, R.Foundations of Global Nonlinear Analysis, W.A. Benjamin, (1968).
    Perlick, V. On Fermat’s principle in general relativity: I. the general case,Class. Quantum Grav.,7, 1319–1331, (1990).
    Perlick, V. The brachistochrone problem in a stationary space-time,J. Math. Phys.,32(11), 3148–3157, (1991).
    Perlick, V. and Piccione, P. The brachistochrone problem in arbitrary spacetimes, preprint, RT-MAT 97–16, IME, USP.
    Piccione, P. Time extremizing trajectories of massive and massless objects in general relativity, inRecent Developments in General Relativity, Casciaro, B., Fortunato, D., Francaviglia, M., and Masiello, A., Eds., Springer, 345–364, (2000).
    Rindler, W.Essential Relativity, Springer, New York, (1977).
    Serre, J.P. Homologie singuliere des espaces fibres,Ann. Math.,54, 425–505, (1951).
    Spivak, M.A Comprehensive Introduction to Differential Geometry, Vol. 2, (second edition), Publish or Perish, Inc., Wilmington, Delaware.
    Sussmann, H. and Willems, J.C. 300 years of optimal control: From the brachystochrone to the maximum principle, in35th Conference on Decision and Control, Kobe, Japan, (1996).