Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Recent advances in the marker and cell method (2004)

  • Authors:
  • USP affiliated authors: TOMÉ, MURILO FRANCISCO - ICMC ; CUMINATO, JOSÉ ALBERTO - ICMC ; CASTELO FILHO, ANTONIO - ICMC ; FERREIRA, VALDEMIR GARCIA - ICMC
  • USP Schools: ICMC; ICMC; ICMC; ICMC
  • DOI: 10.1007/bf02905936
  • Subjects: MECÂNICA DOS FLUÍDOS COMPUTACIONAL
  • Language: Inglês
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/bf02905936 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Archives of Computational Methods in Engineering

    ISSN: 1134-3060

    Citescore - 2017: 5.4

    SJR - 2017: 1.41

    SNIP - 2017: 3.067


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC1411006-10PROD-1411006
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MCKEE, Sean; TOMÉ, Murilo Francisco; CUMINATO, José Alberto; CASTELO FILHO, Antonio; FERREIRA, Valdemir Garcia. Recent advances in the marker and cell method. Archives of Computational Methods in Engineering[S.l.], v. 11, n. 2, p. 107-142, 2004. DOI: 10.1007/bf02905936.
    • APA

      Mckee, S., Tomé, M. F., Cuminato, J. A., Castelo Filho, A., & Ferreira, V. G. (2004). Recent advances in the marker and cell method. Archives of Computational Methods in Engineering, 11( 2), 107-142. doi:10.1007/bf02905936
    • NLM

      Mckee S, Tomé MF, Cuminato JA, Castelo Filho A, Ferreira VG. Recent advances in the marker and cell method. Archives of Computational Methods in Engineering. 2004 ; 11( 2): 107-142.
    • Vancouver

      Mckee S, Tomé MF, Cuminato JA, Castelo Filho A, Ferreira VG. Recent advances in the marker and cell method. Archives of Computational Methods in Engineering. 2004 ; 11( 2): 107-142.

    Referências citadas na obra
    Amsden, A. and Harlow, F. (1970).The SMAC method: a numerical technique for calculating incompressible fluid flows. Technical Report LA-4370 (Los Alamos National Laboratory).
    Armenio, V. (1997). An improved MAC method (SIMAC) for unsteady high-Reynolds free surface flows.Int. J. Numer. Meth. Fluids,24, 185–214.
    Baker, G.R. and Moore, D.W. (1989). The rise and distorsion of a two-dimensional gas bubble in an inviscid liquid.Phys. Fluids A,9, 1451–1459.
    Batchelor, G. K. (1967).An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge.
    Boulton-Stone, J. M. and Blake, J. R. (1993). Gas bubbles bursting at a free surface.J. Fluid Mech.,254, 437–466.
    Bousfield, D. W., Keunings, R. and Denn, M.M. (1986). Nonlinear analysis of the surface tension driven breakup of viscoelastic filaments.J. Non-Newtonian Fluid Mech.,21, 79–97.
    Bousfield, D.W., Keunings, R. and Denn M.M. (1988). Transient deformation of an inviscid inclusion in a viscoelastic extensional flow.J. Non-Newtonian Fluid Mech.,27, 205–221.
    Borue, V., Orszag, S.A. and Staroselsky, I. (1995). Interaction of surface waves with turbulence: direct numerical simulations of turbulent open-channel flow.J. Fluid Mech.,286, 1–23.
    Brocchini, M. and Peregrine, D.H. (2001). The dynamics of strong turbulence at free surfaces. Part I. Description.J. Fluid Mech.,449, 225–254.
    Brocchini, M. and Peregrine, D.H. (2001). The dynamics of strong turbulence at free surfaces. Part 2. Free surface boundary conditions.J. Fluid Mech.,449, 255–290.
    Castelo, A., Tomé, M.F., Cesar, C.N.L., McKee, S. and Cuminato, J.A. (2000). Freeflow-3D: and integrated simulation system for three-dimensional free surface flows.J. Comput. Visual. Science,2, 199–210.
    Chenn, I.-L., Glimm, J., McBryan, O., Plohr, B. and Yaniv, S. (1986). Front tracking for gas dynamics.J. Comput. Phys.,62, 83–110.
    Cormenzana, J., Ledda, A., Laso, M. and Debbaut, B. (2001). Calculation of free surface flows using CONNFESSITT.J. Rheol.,45, 237–258.
    Craik, A.D., Latham, R.C., Fawkes, M.J. and Gribbon, W.F. (1981). The circular hydraulic jump.J. Fluid Mech.,112, 347–362.
    Crochet, M.J. and Keunings, R. (1982). Finite element analysis of die-swell of a highly elastic fluid.J. Non-Newtonian Fluid Mech.,10, 339–356.
    Cruickshauk, J.O. and Munson, B.R. (1981). Viscous-fluid buckling of plane and axisymmetric jets.J. Fluid Mech.,113, 221–239.
    Cruickshank, J.O. (1988). Low-Reynolds-number instabilities in staguating jet flows.J. Fluid Mech.,193, 111–127.
    Darip, P., Glimm, J., Lindquist, B., Maesumi, M. and McBryan, O. (1988).On the Simulation of Heterogeneous Petroleum Reservoirs, in Numerical Simulation in Oil recovery, edited by M. Wheeler, Springer Verlag, New York.
    Deville, M.O. (1974). Numerical experiments on the MAC code for slow flow.J. Comput. Phys.,15, 362–374.
    Durbin, P.A. (1996). On the κ−ε stagnation point anomaly.J. Heat and Fluid Flow,17, 89–90.
    Fauci, L.J. and Peskin, C.S. (1988). A computational model of aquatic animal locomotion.J. Comput. Phys.,77, 85–108.
    Ferreira, V.G., Tomé, M.F., Mangiavacchi, N., Castelo, A., Cuminato, J.A., Fortuna, A.O. and McKee, S. (2002). High order upwinding and the hydraulic jump.Int. J. Numer. Meth. Fluids,39, 549–583.
    Ferreira, V.G., Mangiavacchi N., Tomé, M.F., Castelo, A., Cuminato, J.A., and McKee, S. (2004). Numerical simulation of turbulent free surface flow with two-equation k-ε eddy-viscosity models.Int. J. Numer. Meth. Fluids,44, 347–375.
    Ferziger, J.H. (1987). Simulation of incompressible turbulent flows.J. Comput. Phys.,69, 1–48.
    Fogelson, A.L. and Peskin, C.S. (1988). A fast numerical method for solving the three-dimensional Stokes equations in the presence of gas suspended particles.J. Comput. Phys.,79, 50–69.
    Glimm, J., Grove, J., Lindquist, B., McBryan, O. and Tryggvason, G. (1988). The bifurcation of tracked scalar waves.SIAM J. Sci. Stat. Comput.,9, 61–79.
    Golafshani, M. (1988). A simple numerical technique for transient creep flows with free surfaces.Int. J. Numer. Meth. Fluids,8, 897–912.
    Harlow, F. and Welch, J.E. (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface.Phys. Fluids,8, 2182–2189.
    Harlow, F.H. and Welch, J.E. (1981). A fast ICE solution procedure for flows with largely invariant compressiblity.J. Comput. Phys.,40, 254–261.
    Hirsch, C. (1988).Numerical Computation of Internal and External Flows, Vols. 1 and 2, Wiley series in Numerical Methods in Engineering.
    Hirt, C.W. and Shannon, J.P. (1968). Free-surface stress conditions for incompressible-flow calculations.J. Comput. Phys.,2, 403–411.
    Hirt, C.W. and Cook, J.L. (1972). Calculating three-dimensional flows around structures and over rough terrain.J. Comput. Phys.,10, 324–340.
    Hirt, C.W. and Nichols, B.D. (1981). Volume of Fluid (VOF) method for the dynamics of free boundaries.J. Comput. Phys. 39, 201–225.
    Hirt, C.W. (1988).Flow3D Users Manual, Flow Science Inc.
    Hoffman, G. (1975). Improved form of the low Reynolds number κ−ε turbulence model.Phys. Fluids,18, 309–312.
    Keunings, R. (1986). An algorithm for the simulation of transient viscoelastic flows with free surfaces.J. Comput. Phys.,62, 199–220.
    Keunings, R. and Bousfield, D.W. (1987). Analysis of surface tension driven leveling in horizontal viscoelastic films.J. Non-Newtonian Fluid Mech.,22, 219–233.
    Kolte, M.I., Rasmussen, H.K. and Hassager, O. (1997). Transient filament stretching rheometer. 2. Numerical simulation.Rheol. Acta,36, 285–302.
    Launder, B.E. and Spalding, D.B. (1974). The numerical computation of turbulent flows.Int. J. Numer. Meth. Fluids,15, 127–146.
    Lemos, C. (1996). Higher-order schemes for free surface flows with arbitrary configurations.Int. J. Numer. Meth. Fluids,23, 545–566.
    LeVeque, R.J. (1992).Numerical Methods for Conservation Laws, Lectures in Mathematics, ETH, Zurich.
    Liang, Y., Ozetkin, A. and Neti, S. (1999). Dynamics of viscoelastic jets of polymeric liquid extrudate.J. Non-Newtonian Fluid Mech.,81, 105–132.
    Mangiavacchi, N. Castelo, A., Tomé, M.F., Cuminato, J.A., Bambozzi de Oliveira, M.L. and McKee, S. A numerical technique for including surface tension effects for axisymmetric and planar flows using the GENSMAC method.SIAM J. Sci. Comput. (to appear).
    Mäntylä, M. (1988).An Introduction to Solid Modeling. Computer Science Press, Rockville.
    Markham, G. and Proctor, M.V. (1983). Modifications to the two-dimensional incompressible fluid flow code ZUNI to provide enhanced performance. C.E.G.B. report TPRD/L/0063/M82.
    McQueen, J.F. and Rutter, P. (1981). Outline description of a recently implemented fluid flow code ZUNI. C.E.G.B. report LM/PHYS/258.
    Melville, W.K., (1996). The role of surface-wave breaking in air-sea interaction.Annual Rev. Fluid Mech.,28, 279–323.
    Miyata, H. and Nishimura, S. (1985). Finite-difference simulation of nonlinear waves generated by ships of arbitrary three-dimensional configuration.J. Comput. Phys.,60, 391–436.
    Miyata, H. (1986). Finite-difference simulation of breaking waves.J. Comput. Phys.,65, 179–214.
    Moretti, G. (1987). Computation of flows with shocks.Annual Rev. Fluid Mech.,19, 313–337.
    Nichols, B.D. and Hirt, C.W. (1971). Improved free surface boundary conditions for numerical incompressible flow calculations.J. Comput. Phys.,8, 434.
    Nichols, B.D., Hirt, C.W. and Hotchkins, R.S. (1988).SOLA-VOF: A solution algorithm for transient fluid flow with multiple free boundaries. Technical Report LA-8355 (Los Alamos Scientific Laboratory).
    Osher, S. and Sethian, J.A. (1988). Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations.J. Comput. Phys.,79 (1), 1–49.
    Owens, R.G. and Phillips, T.N. (2002).Computational Rheology. Imperial College Press.
    Pan, Y. and Banerjee, S. (1995). A numerical study of free surface turbulence in channel flow.Phys. Fluids,7, 1649–1664.
    Peskin, C.S. (1977). Numerical analysis of blood flow in the heart.J. Comp. Phys.,25, 220–252.
    Pracht, W.E. (1971). A Numerical method for calculating transient creeping flows.J. Comput. Phys.,7, 46–60.
    Pracht, W.E. (1975). Calculating three-dimensional fluid flows at all speeds with an Eulerian-Lagrangian computing mesh.J. Comput. Phys.,17, 132–159.
    Ryan, M.E. and Dutta, A. (1981). A finite Difference simulation of Extrudate Swell. Proceedings of the2nd World Congr. Chem. Eng.,VI, 277–281, Montreal.
    Santos, F.L.P., Mangiavacchi, N., Castelo, A., Tomé, M.F., Cuminato, J.A. and McKee, S. A novel technique for free surface 2D multiphase flows. Submitted for publication.
    Sarpkaya, T. (1996). Vorticity, free-surface and surfactants.Annual Rev. Fluid Mech.,28, 88–128.
    Sethian, J.A. (1995).Theory. Algorithmns, and Applications of Level Set Methods for Propagating Interfaces. Acta Numerica, C.U.P., Cambridge, UK.
    Sethian, J.A. (1996).Level Set Methods: Evolving Interfaces in Geometry. Fluid Mechanics, Computer Vision and Material Sciences, C. U. P., Cambridge, UK.
    Sicilian, J.M. and Hirt, C.W. (1984). An efficient computation scheme for tracking contaminant concentrations in fluid flows.J. Comput. Phys.,56, 428–447.
    Sousa, F.S., Mangiavacchi, N., Nonato, L.G., Castelo, A., Tomé, M.F., Ferreira, V.G., Cuminato, J.A. and McKee, S. A front tracking finite difference method for solve 3D Navier-Stokes equations for multi-fluid flows with free surfaces.J. Comput. Phys. (to appear).
    Sussman, M. and Smereka, P. (1997). Axisymmetric free boundary problems.J. Fluid Mech.,341, 269–294.
    Sussman, M. and Puckett, E.G. (2000). A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows.J. Comput. Phys.,162, 301–337.
    Tanner, R.I. (1970). A theory of die-swell.J. Polymer Science,8, 2067–2078.
    Tsai, T.M. and Miksis, M.J. (1994). Dynamics of a drop in a constricted capillary tube.J. Fluid Mech.,274, 197–217.
    Tsai, W.-T. and Yue, D.K.P. (1996). Computations of nonlinear free-surface flows.Annual Rev. Fluid Mech.,28, 249–278.
    Tsai, W.-T. (1998). A numerical study of the evolution and structure of a turbulent shear layer under a free surface.J. Fluid Mech.,354, 239–276.
    Tomé, M.F. and McKee, S. (1994). GENSMAC: A computational marker-and-cell method for free surface flows in general domains.J. Comput. Phys. 110, 171–186.
    Tomé, M.F., Duffy, B., and McKee, S. (1996). A numerical technique for solving unsteady non-Newtonian free surface flows.J. Non-Newtonian Fluid Mech.,62, 9–34.
    Tomé, M.F., Castelo, A., Cuminato, J.A. and McKee, S. (1996).GENSMAC3D: Implementation of the Navier-Stokes Equations and Boundary Conditions for 3D Free Surface Flows. Universidade de São Paulo, Departamento de Ciência de Computação e Estatística, Notas do ICMC, No. 29.
    Tomé, M.F. and McKee, S. (1999). Numerical simulation of viscous flow: buckling of planar jets.Int. J. Numer. Meth. Fluids,29, 705–718.
    Tomé, M.F. and McKee, S., Barratt, L., Jarvis, D.A. and Patrick, A.J. (1999). An experimental and numerical investigation of container filling: viscous liquids.Int. J. Numer. Meth. Fluids,31, 1333–1353.
    Tomé, M.F., Castelo, A., Cuminato, J.A., Murakami, J., Minghim, R. and Oliveira, C.F. and McKee, S. (2000). Numerical simulation of axisymmetric free surface flows.J. Comput. Phys.,157, 441–472.
    Tomé, M.F., Castelo, A., Cuminato, J.A. and McKee, S. (2001). GENSMAC3D: A numerical method for solving unsteady three-dimensional free surfaces flows.Int. J. Numer. Meth. Fluids,37, 747–796.
    Tomé, M.F., Mangiavacchi, N., Cuminato, J.A., Castelo, A. and McKee, S. (2002). A numerical technique for solving unsteady viscoelastic free surface flows.J. Non-Newtonian Fluid Mech.,106, 61–106.
    Torrey, M.D., Mjolsness, R.C. and Stein, L.R. (1987).NASA-VOF3D: A three dimensional computer program for incompressible flows with free surfaces. Technical Report LA-11009-MS (Los Alamos National Laboratory).
    Varonos, A. and Bergeles, G. (1998). Development and assessment of a variable-order non-oscillatory scheme for convection term discretization.Int. J. Numer. Meth. Fluids,26, 1–16.
    Welch, J.E., Harlow, F.H., Shannon, J.P. and Daly, B.J. (1965).The MAC method. Technical Report LA-3425 (Los Alamos National Laboratory)
    Yang, Z., and Shih, H. (1993). New time scale based κ−ε model for near-wall turbulence.AIAA J.,7, 1191–1198.
    Yao, M.W. and McKinley, G.H. (1998). Numerical simulation of extensional deformations of viscoelastic liquid bridges in filament stretching devices.J. Non-Newtonian Fluid Mech.,74, 47–88.