Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Effects of EPA and DHA on proliferation, cytokine production, and gene expression in Raji cells (2004)

  • Authors:
  • USP affiliated authors: SILVA, SILVANA AUXILIADORA BORDIN DA - ICB ; CURI, RUI - ICB
  • USP Schools: ICB; ICB
  • DOI: 10.1007/s11745-004-1307-2
  • Subjects: FISIOLOGIA
  • Language: Inglês
  • Imprenta:
  • Source:
    • Título do periódico: Lipids
    • ISSN: 0024-4201
    • Volume/Número/Paginação/Ano: v. 39, p. 857-864, 2004
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/s11745-004-1307-2 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Lipids

    ISSN: 0024-4201

    Citescore - 2017: 1.99

    SJR - 2017: 0.67

    SNIP - 2017: 0.742


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICB12100015048PC-ICB BMB SEP 2004
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      VERLENGIA, Rozangela; NEWSHOLME, Philip; CURI, Rui; et al. Effects of EPA and DHA on proliferation, cytokine production, and gene expression in Raji cells. Lipids, Champaign, v. 39, p. 857-864, 2004. DOI: 10.1007/s11745-004-1307-2.
    • APA

      Verlengia, R., Newsholme, P., Curi, R., Gorjão, R., Kanunfre, C. C., Silva, S. A. B. da, et al. (2004). Effects of EPA and DHA on proliferation, cytokine production, and gene expression in Raji cells. Lipids, 39, 857-864. doi:10.1007/s11745-004-1307-2
    • NLM

      Verlengia R, Newsholme P, Curi R, Gorjão R, Kanunfre CC, Silva SAB da, Lima TM de, Martins EF. Effects of EPA and DHA on proliferation, cytokine production, and gene expression in Raji cells. Lipids. 2004 ; 39 857-864.
    • Vancouver

      Verlengia R, Newsholme P, Curi R, Gorjão R, Kanunfre CC, Silva SAB da, Lima TM de, Martins EF. Effects of EPA and DHA on proliferation, cytokine production, and gene expression in Raji cells. Lipids. 2004 ; 39 857-864.

    Referências citadas na obra
    Harbige, L.S. (2003) Fatty Acids, the Immune Response, and Autoimmunity: A Question of n−6 Essentiality and the Balance Between n−6 and n−3, Lipids 38, 323–341.
    Calder, P.C. (2001) Polyunsatured Fatty Acids, Inflammatory, and Immunity, Lipids, 36, 1007–1024.
    Calder, P.C. (2003) N−3 Polyunsatured Fatty Acids and Inflammatory: From Molecular Biology to the Clinic, Lipids 38, 343–352.
    Kelley, D.S. (2001) Modulation of Human Immune and Inflammatory Responses by Dietary Fatty Acids, Nutrition 17, 669–673.
    Simopoulos, A.P. (2002) Omega-3 Fatty Acids in Inflammation and Autoimmune Diseases, J. Am. Coll. Nutr. 21, 495–505.
    Simopoulos, A.P. (2001) n−3 Fatty Acids and Human Health: Defining Strategies for Public Policy, Lipids 36, S83-S90.
    Kew, S., Mesa, M.D., Tricon, S., Buckley, R., Minihane, A.M., and Yaqoob, P. (2004) Effects of Oils Rich in Eicosapentaenoic and Docosahexaenoic Acids on Immune Cell Composition and Function in Healthy Humans, Am. J. Clin. Nutr. 79, 674–681.
    Kew, S., Gibbons, E.S., Thies, F., McNeill, G.P., Quinlan, P.T., and Calder, P.C. (2003) The Effect of Feeding Structured Triacylglycerols Enriched in Eicosapentaenoic or Docosahexaenoic Acids on Murine Splenocyte Fatty Acid Composition and Leucocyte Phagocytosis, Br. J. Nutr. 90, 1071–1080.
    Hung, P., Kaku, S., Yunoki, S., Ohkura, K., Gu, J.Y., Ikeda, I., Sugano, M., Yazawa, K., and Yamada, K. (1999) Dietary Effect of EPA-rich and DHA-rich Fish Oils on the Immune Function of Sprague-Dawley Rats, Biosci. Biotechnol. Biochem. 63, 135–140.
    Madani, S., Hichami, A., Cherkaoui-Malki, M., Khan, N.A., and Charkaoui-Malki, M. (2004) Diacylglycerols Containing Omega 3 and Omega 6 Fatty Acids Bind to RasGRP and Modulate MAP Kinase Activation, J. Biol. Chem. 279, 1176–1183.
    Roper, R.L., Graf, B., and Phipps, R.P. (2002) Prostaglandin E2 and cAMP Promote B Lymphocyte Class Switching to IgG1, Immunol. Lett. 84, 191–198.
    Yamasaki, M., Chujo, H., Hirao, A., Koyanagi, N., Okamoto, T., Tojo, N., Oishi, A, Iwata, T., Yamauchi-Sato, Y., Yamamoto, T., et al. (2003) Immunoglobulin and Cytokine Production from Spleen Lymphocytes is Modulated in C57BL/6J Mice by Dietary cis-9,trans-11 and trans-10,cis-12 Conjugated Linoleic Acid, J. Nutr. 133, 784–788.
    Miyasaka, C.K., Mendonça, J.R., Nishiyama, A., de Souza, J.A., Pires de Melo, M., Pithon-Curi, T.C., and Curi, R. (2001) Comparative Effects of Fish Oil Given by Gavage and Fish Oil-Enriched Diet on Leukocytes, Life Sci. 69, 1739–1751.
    Miyasaka, C.K., Mendonça, J.R., Silva, Z.L., de-Souza, J.A., Tavares-de Lima, W., and Curi, R. (1999) Modulation of Hypersensitivity Reaction by Lipids Given Orally, Gen. Pharmacol. 32, 597–602.
    Oh-hashi, K., Watanabe, S., Kobayashi, T., and Okuyama, H. (1997) Reevaluation of the Effect of a High Alpha-Linolenate and a High Linoleate Diet on Antigen-Induced Antibody and Anaphylactic Responses in Mice, Biol. Pharm. Bull. 20, 217–223.
    Watanabe, S., Sakai, N., Yasui, Y., Kimura, T., Kobayashi, T., Mizutani T., and Okuyama, H. (1994) A High Alpha-Linolenate Diet Suppresses Antigen-Induced Immunoglobulin E Response and Anaphylactic Shock in Mice, J. Nutr. 124, 1566–1573.
    Arrington, J.L., McMurray, D.N., Switzer, K.C., Fan, Y.Y., and Chapkin, R.S. (2001) Docosahexaenoic Acid Suppresses Function of the CD28 Costimulatory Membrane Receptor in Primary Murine and Jurkat T Cells, J. Nutr. 131, 1147–1153.
    McMurray, D.N., Jolly, C.A., and Chapkin, R.S. (2000) Effects of Dietary n−3 Fatty Acids on T Cell Activation and T Cell Receptor-Mediated Signaling in a Murine Model, J. Infect. Dis. 182, S103-S107.
    Sanderson, P., and Calder, P.C. (1998) Dietary Fish Oil Appears to Prevent the Activation of Phospholipase C-γ in Lymphocytes, Biochim. Biophys. Acta. 1392, 300–308.
    Graber, R., Sumida, C., and Nunez, E.A. (1994) Fatty Acids and Cell Signal Transduction, J. Lipid Mediat. Cell Signal. 9, 91–116.
    Denys, A., Hichami, A., and Khan, N.A. (2001) Eicosapentaenoic Acid and Docosahexaenoic Acid Modulate MAP Kinase (ERK1/ERK2) Signaling in Human T Cells, J. Lipid Res. 42, 2015–2020.
    Kliewer, S.A., and Willson, T.M. (1998) The Nuclear Receptor PPAR γ—Bigger Than Fat, Curr. Opin. Genet. Dev. 8, 576–581.
    Butler, M., Huzel, N., and Barnabe, N. (1997) Unsaturated Fatty Acids Enhance Cell Yields and Perturb the Energy Metabolism of an Antibody-Secreting Hybridoma, Biochem. J. 322, 615–623.
    Bonin, A. and Khan, N.A. (2000) Regulation of Calcium Signaling by Docosahexaenoic Acid in Human T-Cells: Implication of CRAC Channels, J. Lipid Res. 41, 277–284.
    Jolly, C.A., Jiang, Y.H., Chapkin, R.S., and McMurray, D.N. (1997) Dietary (n−3) Polyunsaturated Fatty Acids Suppress Murine Lymphoproliferation, Interleukin-2 Secretion, and the Formation of Diacylglycerol and Ceramide, J. Nutr. 127, 37–43.
    Terano, T., Tanaka, T., Tamura, Y., Kitagawa, M., Higashi, H., Saito, Y., and Hirai, A. (1999) Eicosapentaenoic Acid and Docosahexaenoic Acid Inhibit Vascular Smooth Muscle Cell Proliferation by Inhibiting Phosphorylation of Cdk2-cyclinE Complex, Biochem. Biophys. Res. Commun. 254, 502–506.
    Jump, B.D., and Clarke, S.D. (1999) Regulation of Gene Expression by Dietary Fat, Annu. Rev. Nutr. 19, 63–90.
    Khan, S., Minihane, A.M., Talmud, P.J., Wright, J.W., Murphy, M.C., Williams, C.M., and Griffin, B.A. (2002) Dietary Long-Chain n−3 PUFAs Increase LPL Gene Expression in Adipose Tissue of Subjects with an Atherogenic Lipoprotein Phenotype, J. Lipid Res. 43, 979–985.
    Heimli, H., Giske, C., Naderi, S., Drevon, S., Drevon, C.A., and Hollung, K. (2002) Eicosapentaenoic Acid Promotes Apoptosis in Ramos Cells via Activation of Caspase-3 and-9, Lipids 37, 797–802.
    Heimli, H., Hollung, K., and Drevon, C.A. (2003) Eicosapentaenoic Acid-Induced Apoptosis Depends on Acyl Coa-Synthetase, Lipids 38, 263–268.
    Verlengia, R., Gorjão, R., Kanunfre, C.C., Bordin, S., Lima, T.M.D., and Curi, R. (2004) Comparative Effects of EPA and DHA on Proliferation Cytokines Production and Pleiotropic Genes Expression in Jurkat Cells, J. Nutr. Biochem., in press.
    Epstein, M.A., and Barr, V.M. (1965) Characteristics and Mode of Growth of Tissue Culture Strain (eb1) of Human Lymphoblasts from Burkitt's Lymphoma, J. Natl. Cancer Inst. 34, 231–240.
    Epstein, M.A., Achong, B.G., Barr, Y.M., Zajac, B., Henle, G., and Henle, W. (1966) Morphological and Virological Investigations on Cultured Burkitt Tumor Lymphoblasts (strain Raji), J. Natl. Cancer Inst. 37, 547–559.
    Lima, T.M., Kanunfre, C.C., Pompeia, C., Verlengia, R., and Curi, R. (2002) Ranking the Toxicity of Fatty Acids on Jurkat and Raji Cells by Flow Cytometric Analysis, Toxicol. In Vitro 16, 741–747.
    Siddiqui, R.A., Jenski, L.J., Neff, K., Harvey, K., Kovacs, R.J., and Stillwell, W. (2001) Docosahexaenoic Acid Induces Apoptosis in Jurkat Cells by a Protein Phosphatase-Mediated Process, Biochim. Biophys. Acta 1499, 265–275.
    Folch, J., Lee, M., and Sloane Stanley, G.H. (1957) A Simple Method for Isolation Purification of Total Lipid from Animal Tissue, J. Biol. Chem. 226, 497–503.
    Beyer, R.S., and Jensen, L.S. (1989) Overestimation of the Cholesterol Content of Egg, Agric Food Chem. 37, 917.
    Hamilton, S., Hamilton, R.J., and Sewell, P.A. (1992) Extraction of Lipids and Derivative Formation, in Lipid Analysis—A Practical Approach, 1st edn., (Hamilton, R.J., and Hamilton, S., eds.), pp. 13–64, TRL Press at Oxford University Press, Oxford.
    Nishiyama-Naruke, A., de Sousa, J.A.A., Carnelós Filho, M., and Curi, R. (1998) HPLC Determination of Underivatized Fatty Acid Saponified at Low Temperature Analysis of Fatty Acids in Oils and Tissues, Anal. Lett. 31, 2565–2576.
    Abushufa, R., Reed, P., and Weinkove, C. (1994) Fatty Acids in Erythrocytes Measured by Isocratic HPLC, Clin. Chem. 40, 1707–1712.
    Ben-Bassat, H., Goldblum, N., Mitrani, S., Klein, G., and Johansson, B. (1976) Concanavalin A Receptors on the Surface Membrane of Lymphocytes from Patients with African Burkitt's Lymphoma and Lymphoma Cell Lines, Int. J. Cancer 17, 448–454.
    Verlengia, R., Gorjão, R., Kanunfre, C.C., Bordin, S., Lima, T.M., Newsholme, P., and Curi, R. (2003) Genes Regulated by Arachidonic and Oleic Acids in Raji Cells, Lipids 38, 1157–1165.
    Sambrook, J., and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual, 3rd edn., A8.21, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
    Yamazaki, K., Kuromitsu, J., and Tanaka, I. (2002) Microarray Analysis of Gene Expression Changes in Mouse Liver Induced by Peroxisome Proliferator-Activated Receptor Alpha Agonists, Biochem. Biophys. Res. Commun. 290, 1114–1122.
    Innis, M.A., and Gelfand, D.H. (1990) Optimization of PCRs, in PCR Protocols: A Guide to Methods and Applications (Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J., eds.), 1st edn., pp. 3–12, Academic Press, San Diego.
    Kwok, S., and Higuch, R. (1989) Avoiding False Positives with PCR, Nature 339, 237–238.
    Peterson, L.D., Thies, F., Sanderson, P., Newsholme, E.A., and Calder, P.C. (1998) Low Levels of Eicosapentaenoic and Docosahexaenoic Acids Mimic the Effects of Fish Oil upon Rat Lymphocytes, Life Sci. 62, 2209–2217.
    Tomobe, Y.I., Morizawa, K., Tsuchida, M., Hibino, H., Nakano, Y., and Tanaka, Y. (2000) Dietary Docosahexaenoic Acid Suppresses Inflammation and Immunoresponses in Contact Hypersensitivity Reaction in Mice, Lipids 35, 61–69.
    Volker, D.H., FitzGerald, P.E., and Garg, M.L. (2000) The Eicosapentaenoic to Docosahexaenoic Acid Ratio of Diets Affects the Pathogenesis of Arthritis in Lew/SSN Rats, J. Nutr. 130, 559–565.
    Thies, F., Miles, E.A., Nebe-von-Caron, G., Powell, J.R., Hurst, T.L., Newsholme, E.A., and Calder, P.C. (2001) Influence of Dietary Supplementation with Long-Chain n−3 or n−6 Polyunsaturated Fatty Acids on Blood Inflammatory Cell Populations and Functions and on Plasma Soluble Adhesion Molecules in Healthy Adults, Lipids 36, 1183–1193.
    Kelley, D.S., Taylor, P.C., Nelson, G.J. and Mackey, B.E. (1998) Dietary Docosahexaenoic Acid and Immunocompetence in Young Healthy Men, Lipids 33, 559–566.
    Kelley, D.S., Taylor, P.C., Nelson, G.J., Schmidt, P.C., Ferretti, A., Erickson, K.L., Yu, R., Chandra, R.K., and Mackey, B.E. (1999) Docosahexaenoic Acid Ingestion Inhibits Natural Killer Cell Activity and Production of Inflammatory Mediators in Young Healthy Men, Lipids 34, 317–324.
    Mayer, K., Gokorsch, S., Fegbeutel, C., Hattar, K., Rosseau, S., Walmrath, D., Seeger, W., and Grimminger, F. (2003) Parenteral Nutrition with Fish Oil Modulates Cytokine Response in Patients with Sepsis, Am. J. Respir. Crit. Care Med. 167, 1321–1328.
    Wallace, F.A., Miles, E.A., Evans, C., Stock, T.E., Yaqoob, P., and Calder, P.C. (2001) Dietary Fatty Acids Influence the Production of Th1- but Not Th2-type Cytokines, J. Leukoc. Biol. 69, 449–457.
    Yusufi, A.N., Cheng, J., Thompson, M.A., Walker, H.J., Gray, C.E., Warner, G.M. and Grande, J.P. (2003) Differential Effects of Low-Dose Docosahexaenoic Acid and Eicosapentaenoic Acid on the Regulation of Mitogenic Signaling Pathways in Mesangial Cells, J. Lab. Clin. Med. 141, 318–329.
    Denys, A., Aires, V., Hichami, A., and Khan, N.A. (2004) Thapsigargin-Stimulated MAP Kinase Phosphorylation via CRAC Channels and PLD Activation: Inhibitory Action of Docosahexaenoic Acid, FEBS Lett. 564, 177–182.
    Siddiqui, R.A., Jenski, L.J., Harvey, K.A., Wiesehan, J.D., Stillwell, W., and Zaloga, G.P. (2003) Cell-Cycle Arrest in Jurkat Leukaemic Cells: A Possible Role for Docosahexaenoic Acid, Biochem. J. 371, 621–629.
    Diaz, O., Berquand, A., Dubois, M., Di Agostino, S., Sette, C., Bourgoin, S., Lagarde, M., Nemoz, G., and Prigent, A.F. (2002) The Mechanism of Docosahexaenoic Acid-Induced Phospholipase D Activation in Human Lymphocytes Involves Exclusion of the Enzyme from Lipid Rafts, J. Biol. Chem. 277, 39368–39378.
    Denys, A., Hichami, A., and Khan, N.A. (2002) Eicosapentaenoic Acid and Docosahexaenoic Acid Modulate MAP Kinase Enzyme Activity in Human T-Cells, Mol. Cell Biochem. 232, 143–148.