Ver registro no DEDALUS
Exportar registro bibliográfico

Lacunaridade para caracterização de formas de dimensão finita (2004)

  • Authors:
  • USP affiliated authors: RODRIGUES, ERBE PANDINI - IFSC
  • USP Schools: IFSC
  • Sigla do Departamento: FFI
  • Subjects: FRACTAIS; PROCESSAMENTO DE IMAGENS
  • Language: Português
  • Abstract: A caracterização de objetos de dimensões finitas é uma das áreas de aplicação do processamento de imagens [2]. Esta caracterização contribui para o estudo de dinâmicas de crescimento por modelagem matemática e simulação computacional [3,4,5]. Existem medidas que inicialmente foram criadas para quantificar certas características de objetos auto-similares, como as formas fractais, que são muito utilizadas em estudos de física. Uma das medidas mais conhecidas é a dimensão fractal, que está associada à complexidade do objeto. A dimensão fractal tem sido utilizada em estudos de objetos como os gerados pelo modelo DLA (Diffusion-Limited-Aggregation) [6,7], que é um modelo que gera formas por meio de agregação de partículas. Mesmo que poderosa, a dimensão fractal é uma medida degenerada, ou seja, objetos com geometrias distintas podem apresentar mesma dimensão fractal. Com o intuito de contornar esta característica e melhor caracterizar uma forma geométrica uma nova medida denominada lacunaridade foi sugerida por Mandelbrot [8], de tal forma que objetos com mesma dimensão fractal possuíssem lacunaridade distinta. A medida de lacunaridade está relacionada com a textura do objeto e informa o quanto o objeto desvia de ser invariante à translação [9,10,11]. Valores baixos de lacunaridade indicam maior invariância translacional, enquanto valores altos indicam o contrário, ou seja, um objeto mais heterogêneo. Existem vários modelos para o cálculo da lacunaridade[12,13,14,9], contudo, ainda restam algumas arbitrariedades que dificultam a aplicação destes no estudo de objetos finitos [15]. O objetivo deste estudo é justamente adaptar a medida de lacunaridade à análise seqüencial de imagens de objetos com auto-similaridade restrita, como por exemplo, neurônios, de forma a remover as arbitrariedades características dos algoritmos convencionais
  • Imprenta:
  • Data da defesa: 16.12.2004
  • Acesso online ao documento

    Online access or search this record in

    Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    IFSC82001637Te1637
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      RODRIGUES, Erbe Pandini; COSTA, Luciano da Fontoura. Lacunaridade para caracterização de formas de dimensão finita. 2004.Universidade de São Paulo, São Carlos, 2004. Disponível em: < http://www.teses.usp.br/teses/disponiveis/76/76132/tde-27112014-165416/pt-br.php >.
    • APA

      Rodrigues, E. P., & Costa, L. da F. (2004). Lacunaridade para caracterização de formas de dimensão finita. Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/76/76132/tde-27112014-165416/pt-br.php
    • NLM

      Rodrigues EP, Costa L da F. Lacunaridade para caracterização de formas de dimensão finita [Internet]. 2004 ;Available from: http://www.teses.usp.br/teses/disponiveis/76/76132/tde-27112014-165416/pt-br.php
    • Vancouver

      Rodrigues EP, Costa L da F. Lacunaridade para caracterização de formas de dimensão finita [Internet]. 2004 ;Available from: http://www.teses.usp.br/teses/disponiveis/76/76132/tde-27112014-165416/pt-br.php

    Últimas obras dos mesmos autores vinculados com a USP cadastradas na BDPI: