Ver registro no DEDALUS
Exportar registro bibliográfico



Transcriptome analysis of Aspergillus fumigatus exposed to voriconazole (2006)

  • Authors:
  • DOI: 10.1007/s00294-006-0073-2
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00294-006-0073-2 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Current Genetics

    ISSN: 0172-8083

    Citescore - 2017: 3.01

    SJR - 2017: 1.555

    SNIP - 2017: 0.967

  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FCFRP10600013806-Spcd 1519484
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      FERREIRA, Márcia Eliana da Silva; MALAVAZI, Iran; SAVOLDI, Marcela; et al. Transcriptome analysis of Aspergillus fumigatus exposed to voriconazole. Current Genetics, Heidelberg, 2006. Disponível em: < URL > DOI: 10.1007/s00294-006-0073-2.
    • APA

      Ferreira, M. E. da S., Malavazi, I., Savoldi, M., Brakhage, A. A., Goldman, M. H. de S., Kim, H. S., et al. (2006). Transcriptome analysis of Aspergillus fumigatus exposed to voriconazole. Current Genetics. doi:10.1007/s00294-006-0073-2
    • NLM

      Ferreira ME da S, Malavazi I, Savoldi M, Brakhage AA, Goldman MH de S, Kim HS, Nierman WC, Goldman GH. Transcriptome analysis of Aspergillus fumigatus exposed to voriconazole [Internet]. Current Genetics. 2006 ;Available from: URL
    • Vancouver

      Ferreira ME da S, Malavazi I, Savoldi M, Brakhage AA, Goldman MH de S, Kim HS, Nierman WC, Goldman GH. Transcriptome analysis of Aspergillus fumigatus exposed to voriconazole [Internet]. Current Genetics. 2006 ;Available from: URL

    Referências citadas na obra
    Agarwal AK, Rogers PD, Baerson SR, Jacob MR, Barker KS, Cleary JD, Walker LA, Nagle DG, Clark AM (2003) Genome-wide expression profiling of the response to polyene, pyrimidine, azole, and echinocandin antifungal agents in Saccharomyces cerevisiae. J Biol Chem 12:34998–35015
    Bammert GF, Fostel JM (2000) Genome-wide expression patterns in Saccharomyces cerevisiae: comparison of drug treatments and genetic alterations affecting biosynthesis of ergosterol. Antimicrob Agents Chemother 44:1255–1265
    Barker KS, Crisp S, Wiederhold N, Lewis RE, Bareither B, Eckstein J, Barbuch R, Bard M, Rogers PD (2004) Genome-wide expression profiling reveals genes associated with amphotericin B and fluconazole resistance in experimentally induced antifungal resistant isolates of Candida albicans. J Antimicrob Chemother 54:376–385
    Burns C, Geraghty R, Neville C, Murphy A, Kavanagh K, Doyle S (2005) Identification, cloning, and functional expression of three glutathione transferase genes from Aspergillus fumigatus. Fungal Genet Biol 42:319–327
    Dannaoui E, Borel E, Monier MF, Piens MA, Picot S, Persat F (2001) Acquired itraconazole resistance in Aspergillus fumigatus. J Antimicrob Chemother 47:333–340
    De Backer MD, Ilyina T, Ma XJ, Vandoninck S, Luyten WH, Vanden Bossche H (2001) Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Antimicrob Agents Chemother 45:1660–1670
    Denning DW (1996) Diagnosis and management of invasive aspergillosis. Curr Clin Top Infect Dis 16:277–299
    Denning DW, Venkateswarlu K, Oakley KL, Anderson MJ, Manning NJ, Stevens DA, Warnock DW, Kelly SL (1997) Itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 41:1364–1368
    Diaz-Guerra TM, Mellado E, Cuenca-Estrella M, Rodríguez-Tudela JL (2003) A point mutation in the 14α-sterol demethylase gene cyp51A contributes to itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 47:1120–1124
    Espinel-Ingroff A, Fothergill A, Ghannoum M, Manavathu E, Ostrosky-Zeichner L, Pfaller M, Rinaldi M, Schell W, Walsh T (2005) Quality control and reference guidelines for CLSI broth microdilution susceptibility method (M 38-A document) for amphotericin B, itraconazole, posaconazole, and voriconazole. J Clin Microbiol 43:5243–5246
    Ferreira ME, Colombo AL, Paulsen I, Ren Q, Wortman J, Huang J, Goldman MH, Goldman GH (2005) The ergosterol biosynthesis pathway, transporter genes, and azole resistance in Aspergillus fumigatus. Med Mycol 43:S313–S319
    Hanson PI, Whiteheart SW (2005) AAA+ proteins: have engine, will work. Nat Rev Mol Cell Biol 6:519–529
    Herbrecht R, Denning D, Patterson TF, Bennett JE, Greene RE, Oestmann JW, Kern WV, Marr KA, Ribaud P, Lortholary O, Silvestre R, Rubin RH, Wingard JR, Stark P, Durand C, Caillot D, Thiel E, Chandrasekar PH, Hodges MR, Schlamm HT, Troke PF, de Pauw B (2002) Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med 347:408–415
    Jain P, Akula I, Edlind T (2003) Cyclic AMP signaling pathway modulates susceptibility of candida species and Saccharomyces cerevisiae to antifungal azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother 47:3195–3201
    Kafer E (1977) Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv Genet 19:33–131
    Karababa M, Coste AT, Rognon B, Bille J, Sanglard D (2004) Comparison of gene expression profiles of Candida albicans azole-resistant clinical isolates and laboratory strains exposed to drugs inducing multidrug transporters. Antimicrob Agents Chemother 48:3064–3079
    Kelly SL, Lamb DC, Kelly DE, Loeffler J, Einsele H (1996) Resistance to fluconazole and amphotericin in Candida albicans from AIDS patients. Lancet 348:1523–1524
    Kelly SL, Lamb DC, Kelly DE, Manning NJ, Loeffler J, Hebart H, Schumacher U, Einsele H (1997) Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol delta 5,6-desaturation. FEBS Lett 400:80–82
    Kontoyiannis DP, Rupp S (2000) Cyclic AMP and fluconazole resistance in Saccharomyces cerevisiae. Antimicrob Agents Chemother 44:1743–1744
    Krappmann S, Bignell EM, Reichard U, Rogers T, Haynes K, Braus GH (2004) The Aspergillus fumigatus transcriptional activator CpcA contributes significantly to the virulence of this fungal pathogen. Mol Microbiol 52:785–799
    Langfelder K, Gattung S, Brakhage AA (2002) A novel method used to delete a new Aspergillus fumigatus ABC transporter-encoding gene. Curr Genet 41:268–274
    Liebmann B, Gattung S, Jahn B, Brakhage AA (2003) cAMP signaling in Aspergillus fumigatus is involved in the regulation of the virulence gene pksP and in defense against killing by macrophages. Mol Genet Genomics 269:420–435
    Liebmann B, Muller M, Braun A, Brakhage AA (2004) The cyclic AMP-dependent protein kinase a network regulates development and virulence in Aspergillus fumigatus. Infect Immun 72:5193–5203
    Liu TT, Lee RE, Barker KS, Lee RE, Wei L, Homayouni R, Rogers PD (2005) Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob Agents Chemother 49:2226–2236
    Lupetti A, Danesi R, Campa M, del Tacca M, Kelly S (2002) Molecular basis of resístance to azole antifungals. Trends Mol Med 8:76–81
    Manavathu EK, Vazquez JA, Chandrasekar PH (1999) Reduced susceptibility in laboratory-selected mutants of Aspergillus fumigatus to itraconazole due to decreased intracellular accumulation of the antifungal agent. Int J Antimicrob Agents 12:213–219
    Mann PA, Parmegiani RM, Wei S-Q, Mendrick CA, Li X, Loenberg D, DiDomenico B, Hare RS, Walker SS, McNicholas PM (2003) Mutations in Aspergillus fumigatus resulting in reduced susceptibility to posaconazole appear to be restricted to a single amino acid in the cytochrome P-450 14α-demethylase. Antimicrob Agents Chemother 47:577–581
    Marichal P, Koymas L, Willlemsens S, Bellens D, Verhasselt P, Luyten W, Borgers M, Ramaekers FCS, Odds FC, VandenBossche H (1999) Contribution of mutations in the cytochrome P-450 14-α-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans. Microbiology 145:2701–2713
    Mellado E, Diaz-Guerra TM, Cuenca-Estrella M, Rodriguez-Tudela JL (2001) Identification of two different 14-alpha sterol demethylase-related genes (cyp51A and cyp51B) in Aspergillus fumigatus and other Aspergillus species. J Clin Microbiol 39:2431–2438 (Erratum in: J Clin Microbiol 2001; 39:4225)
    Nascimento AM, Goldman GH, Park S, Marras SA, Delmas G, Oza U, Lolans K, Dudley MN, Mann PA, Perlin DS (2003) Multiple resistance mechanisms among Aspergillus fumigatus mutants with high-level resistance to itraconazole. Antimicrob Agents Chemother 47:1519–1526
    National Committee for Clinical Laboratory Standards (2002) Reference method for broth dilution antifungal susceptibility testing of conidium-forming filamentous fungi. Proposed standard M38-A. National Committee for Clinical Laboratory Standards, Wayne
    Nolte FS, Parkinson T, Falconer DJ, Dix S, Williams J, Gilmore C, Geller R, Wingard JR (1997) Isolation and characterization of fluconazole- and amphotericin B-resistant Candida albicans from blood of two patients with leukaemia. Antimicrob Agents Chemother 44:196–199
    Osherov N, Kontoyannis DP, Romans A, May GS (2001) Resistance to itraconazole in Aspergillus nidulans and Aspergillus fumigatus is conferred by extra copies of the A. nidulans P-450 14α-demethylase gene, pdmA. J Antimicrob Chemother 48:75–81
    Ramesh MA, Laidlaw RD, Durrenberger F, Orth AB, Kronstad JW (2001) The cAMP signal transduction pathway mediates resistance to dicarboximide and aromatic hydrocarbon fungicides in Ustilago maydis. Fungal Genet Biol 32:183–193
    Rogers PD, Barker KS (2003) Genome-wide expression profile analysis reveals coordinately regulated genes associated with stepwise acquisition of azole resistance in Candida albicans clinical isolates. Antimicrob Agents Chemother 47:1220–1227
    Sanglard D, Odds FC (2002) Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2:73–85
    Sanglard D, Ischer F, Parkinson T, Falconer D, Bille J (2003a) Candida albicans: mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob Agents Chemother 47:2404–2412
    Sanglard D, Ischer F, Marchetti O, Entenza J, Bille J (2003b) Calcineurin A of Candida albicans: involvement in antifungal tolerance, cell morphogenesis and virulence. Mol Microbiol 48:959–976
    Semighini CP, Marins M, Goldman MHS, Goldman GH (2002) Quantitative analysis of the relative transcript levels of ABC transporter Atr genes in Aspergillus nidulans by real-time reverse transcription-PCR assay. Appl Environ Microbiol 68:1351–1357
    Slaven JW, Anderson MJ, Sanglard D, Dixon GK, Bille J, Roberts IS, Denning DW (2002) Increased expression of a novel Aspergillus fumigatus ABC transporter gene, AtrF, in the presence of itraconazole in an itraconazole resistant clinical isolate. Fungal Genet Biol 36:199–206
    Tobin MB, Peery RB, Skatrud PL (1997) Genes encoding multiple drug resistance-like proteins in Aspergillus fumigatus and Aspergillus flavus. Gene 200:11–23
    Tsitsigiannis DI, Kowieski TM, Zarnowski R, Keller NP (2005a) Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans. Microbiology 151:1809–1821
    Tsitsigiannis DI, Bok JW, Andes D, Nielsen KF, Frisvad JC, Keller NP (2005b) Aspergillus cyclooxygenase-like enzymes are associated with prostaglandin production and virulence. Infect Immun 73:4548–4559
    White TC, Marr KA, Bowden RA (1998) Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11:382–402
    Zhang L, Zhang Y, Zhou Y, An S, Zhou Y, Cheng J (2002) Response of gene expression in Saccharomyces cerevisiae to amphotericin B and nystatin measured by microarrays. J Antimicrob Chemother 49:905–915