Ver registro no DEDALUS
Exportar registro bibliográfico



mTOR pathway inhibition attenuates skeletal muscle growth induced by stretching (2006)

  • Authors:
  • USP affiliated authors: MORISCOT, ANSELMO SIGARI - ICB
  • USP Schools: ICB
  • DOI: 10.1007/s00441-005-0081-4
  • Subjects: HISTOLOGIA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/s00441-005-0081-4 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Brain Research

    ISSN: 0006-8993

    Citescore - 2017: 3.02

    SJR - 2017: 1.404

    SNIP - 2017: 0.828

  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICB12100018883PC-ICB BMC SEP 2006
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      AOKI, Marcelo Saldanha; MIYABARA, Elen Haruka; SOARES, Antonio Garcia; SAITO, Elisa Tiemi; MORISCOT, Anselmo Sigari. mTOR pathway inhibition attenuates skeletal muscle growth induced by stretching. Cell Tissue Research, Berlin, v. 324, n. 1, p. 149-156, 2006. DOI: 10.1007/s00441-005-0081-4.
    • APA

      Aoki, M. S., Miyabara, E. H., Soares, A. G., Saito, E. T., & Moriscot, A. S. (2006). mTOR pathway inhibition attenuates skeletal muscle growth induced by stretching. Cell Tissue Research, 324( 1), 149-156. doi:10.1007/s00441-005-0081-4
    • NLM

      Aoki MS, Miyabara EH, Soares AG, Saito ET, Moriscot AS. mTOR pathway inhibition attenuates skeletal muscle growth induced by stretching. Cell Tissue Research. 2006 ; 324( 1): 149-156.
    • Vancouver

      Aoki MS, Miyabara EH, Soares AG, Saito ET, Moriscot AS. mTOR pathway inhibition attenuates skeletal muscle growth induced by stretching. Cell Tissue Research. 2006 ; 324( 1): 149-156.

    Referências citadas na obra
    Anderson JE, Wozniak AC (2004) Satellite cell activation on fibers: modeling events in vivo—an invited review. Can J Physiol Pharmacol 82:300–310
    Ansved T, Larsson L (1989) Effects of ageing on enzyme-histochemical, morphometrical and contractile properties of the SOL muscle in rat. J Neurol Sci 93:105–124
    Armstrong RB, Marum P, Tullison P, Saubert IV CW (1979) Acute hypertrophic response of skeletal muscle to removal of synergists. J Appl Physiol 46:835–842
    Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF, Hall MN (1996) TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell 7:25–42
    Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001) Akt/mTOR pathway is crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019
    Bolster DR, Kubica N, Crozier SJ, Williamson DL, Farrell PA, Kimball SR, Jefferson LS (2003) Immediate response of mammalian target of rapamycin (mTOR)-mediated signaling following acute resistance exercise in rat skeletal muscle. J Physiol (Lond) 533:213–220
    Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM (1998) RAFT1 phosphorylation of the transcriptional regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA 95:1432–1437
    Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39
    Chen J, Fang Y (2002) A novel pathway regulating the mammalian target of rapamycin (mTOR) signaling. Biochem Pharmacol 64:1071–1077
    Choi KM, McMahon LP, Lawrence JJ (2003) Two motifs in the translational repressor PHAS-1 required for efficient phosphorylation by mammalian target of rapamycin and for recognition by Raptor. J Biol Chem 278:19667–19673
    Dunn SE, Simard AR, Prud'homme RA, Michel RN (2002) Calcineurin and skeletal muscle growth. Nat Cell Biol 4:E46–E47
    Dupont–Versteegden E, Knox M, Gurley CM, Houle JD, Peterson CA (2002) Maintenance of muscle mass is not dependent on the calcineurin-NFAT pathway. Am J Physiol 282:C1387–C1395
    Glass DJ (2003) Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat Cell Biol 5:87–90
    Goldspink G, Williams P, Simpson H (2002) Gene expression in response to muscle stretch. Clin Orthop 403:S146–S152
    Goldspink G (2002) Gene expression in skeletal muscle. Biochem Soc Trans 30:285–290
    Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezaga K (2002) Raptor, a binding partner of target of rapamycin (TOR) mediates TOR action. Cell 110:177–179
    Hara K, Yonezawa K, Kozlowski MT, Sugimoto T, Andrabi K, Weng QP, Kasuga M, Nishimoto I, Avruch J (1997) Regulation of eIF-4E BP1 phosphorylation by mTOR. J Biol Chem 272:26457–26463
    Hill M, Goldspink G (2003) Expression and splicing of the insulin-like growth factor gene in rodent muscle is associated with muscle satellite (stem) cell activation following local tissue damage. J Physiol (Lond) 549:409–418
    Kim D, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument–Bromage H, Tempst P, Sabatini DM (2002) mTOR interacts with Raptor to form a nutrient-sensitive complex that signals to cell growth machinery. Cell 110:163–175
    Koh TJ, Tidball JG (1999) Nitric oxide synthase inhibitors reduce sarcomere addition in rat skeletal muscle. J Physiol (Lond) 519:189–196
    Musaro A, Mccullagh KJ, Naya FJ, Olson EN, Rosenthal N (1999) IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature 400:581–585
    Naya RJ, Mercer B, Shelton JM, Richardson JA, Williams RS, Olson EN (2000) Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J Biol Chem 275:4545–4548
    Nojima H, Tokunaga C, Eguchi S, Oshiro N, Hidayat S, Yoshino K, Hara K, Tanaka N, Avruch J, Yonezawa K (2003) The mammalian target of rapamycin (mTOR) partner, Raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem 278:15461–15464
    Olson EN, Williams RS (2000) Remodeling muscles with calcineurin. Bioessays 22:510–519
    Pallafacchina G, Calabria E, Serrano A, Kalhovde JM, Schiaffino S (2002) A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc Natl Acad Sci USA 99:9213–9218
    Rao A, Luo C, Hogan PG (1997) Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 15:707–747
    Schalm SS, Blenis J (2002) Identification of a conserved motif required for mTOR signaling. Curr Biol 12:632–639
    Schalm SS, Fingar DC, Sabatini DM, Blenis J (2003) TOS motif mediated Raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol 13:797–806
    Schmelzie T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103:253–262
    Semsarian C, Wu MJ, Ju YK, Marciniec T, Yeoh T, Allen DG, Harvey RP, Graham RM (1999) Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature 400:576–581
    Serrano AL, Murgia M, Pallafacchina G, Calabria E, Coniglio P, Lomo T, Schiaffino S (2001) Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth. Proc Natl Acad Sci USA 98:13108–13113
    Williams PE, Goldspink G (1971) Longitudinal growth of striated muscle fibers. J Cell Sci 9:751–759
    Williams P, Watt P, Bicik V, Goldspink G (1986) Effect of stretch combined with electrical stimulation on the type of sarcomeres produced at the ends of muscle fibers. Exp Neurol 93:500–509
    Yancopoulos GD, Glass DJ (2002) Calcineurin and skeletal muscle growth. Nat Cell Biol 4:E46–E47
    Yonezawa K, Tokunaga C, Oshiro N, Yoshino K (2004) Raptor, a binding partner of target of rapamycin. Biochem Biophys Res Commun 313:437–441