Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Optimal dynamical range of excitable networks at criticality (2006)

  • Authors:
  • USP affiliated authors: KINOUCHI FILHO, OSAME - FFCLRP
  • USP Schools: FFCLRP
  • DOI: 10.1038/nphys289
  • Subjects: PSICOFÍSICA; REDES NEURAIS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1038/nphys289 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green
    Informações sobre o Citescore
  • Título: Nature Physics

    ISSN: 1745-2473

    Citescore - 2017: 11.58

    SJR - 2017: 9.791

    SNIP - 2017: 5.975


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FCLRP20800037386-Spcd 1561718
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      KNOUCHI, Osame; COPELLI, Mauro. Optimal dynamical range of excitable networks at criticality. Nature Physics, London, v. 2, p. 348-352, 2006. DOI: 10.1038/nphys289.
    • APA

      Knouchi, O., & Copelli, M. (2006). Optimal dynamical range of excitable networks at criticality. Nature Physics, 2, 348-352. doi:10.1038/nphys289
    • NLM

      Knouchi O, Copelli M. Optimal dynamical range of excitable networks at criticality. Nature Physics. 2006 ; 2 348-352.
    • Vancouver

      Knouchi O, Copelli M. Optimal dynamical range of excitable networks at criticality. Nature Physics. 2006 ; 2 348-352.

    Referências citadas na obra
    Stevens, S. S. Psychophysics: Introduction to its Perceptual, Neural and Social Prospects (Wiley, New York, 1975).
    Wachowiak, M. & Cohen, L. B. Representation of odorants by receptor neuron input to the mouse olfactory bulb. Neuron 32, 723–735 (2001).
    Angioy, A. M., Desogus, A., Barbarossa, I. T., Anderson, P. & Hansson, B. S. Extreme sensitivity in an olfactory system. Chem. Senses 28, 279–284 (2003).
    Fried, H. U., Fuss, S. H. & Korsching, S. I. Selective imaging of presynaptic activity in the mouse olfactory bulb shows concentration and structure dependence of odor responses in identified glomeruli. Proc. Natl Acad. Sci. USA 99, 3222–3227 (2002).
    Cleland, T. A. & Linster, C. Concentration tuning mediated by spare receptor capacity in olfactory sensory neurons: a theoretical study. Neural Comput. 11, 1673–1690 (1999).
    Copelli, M., Roque, A. C., Oliveira, R. F. & Kinouchi, O. Physics of psychophysics: Stevens and Weber-Fechner laws are transfer functions of excitable media. Phys. Rev. E 65, 060901 (2002).
    Copelli, M. & Kinouchi, O. Intensity coding in two-dimensional excitable neural networks. Physica A 349, 431–442 (2005).
    Copelli, M., Oliveira, R. F., Roque, A. C. & Kinouchi, O. Signal compression in the sensory periphery. Neurocomputing 65–66, 691–696 (2005).
    Reiser, J. & Matthews, H. Response properties of isolated mouse olfactory receptor cells. J. Physiol. 530, 113–122 (2001).
    Tomaru, A. & Kurahashi, T. Mechanisms determining the dynamic range of the bullfrog olfactory receptor cell. J. Neurophysiol. 93, 1880–1888 (2005).
    Chater, N. & Brown, G. D. Scale-invariance as a unifying psychological principle. Cognition 69, B17–B24 (1999).
    Furtado, L. S. & Copelli, M. Response of electrically coupled spiking neurons: a cellular automaton approach. Phys. Rev. E 73, 011907 (2006).
    Beggs, J. M. & Plenz, D. Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167–11177 (2003).
    Haldeman, C. & Beggs, J. M. Critical branching captures activity in living neural networks and maximizes the number of metastable states. Phys. Rev. Lett. 94, 058101 (2005).
    Langton, C. G. Computation at the edge of chaos: phase transitions and emergent computation. Physica D 42, 12–37 (1990).
    Bak, P. How Nature Works: The Science of Self-Organized Criticality (Oxford Univ. Press, New York, 1997).
    Chialvo, D. R. Critical brain networks. Physica A 340, 756–765 (2004).
    Kosaka, T., Deans, M. R., Paul, D. L. & Kosaka, K. Neuronal gap junctions in the mouse main olfactory bulb: morphological analyses on transgenic mice. Neuroscience 134, 757–769 (2005).
    Migliore, M., Hines, M. L. & Shepherd, G. M. The role of distal dendritic gap junctions in synchronization of mitral cell axonal output. J. Comput. Neurosci. 18, 151–161 (2005).
    Christie, J. M. et al. Connexin36 mediates spike synchrony in olfactory bulb glomeruli. Neuron 46, 761–772 (2005).
    Marro, J. & Dickman, R. Nonequilibrium Phase Transitions in Lattice Models (Cambridge Univ. Press, Cambridge, 1999).
    Laurent, G. Olfactory network dynamics and the coding of multidimensional signals. Nature Rev. Neurosci. 3, 884–895 (2002).
    Lewis, T. J. & Rinzel, J. Topological target patterns and population oscillations in a network with random gap junctional coupling. Neurocomputing 38–40, 763–768 (2001).
    Lewis, T. J. & Rinzel, J. Self-organized synchronous oscillations in a network of excitable cells coupled by gap junctions. Network Comput. Neural Syst. 11, 299–320 (2000).
    Schubert, T. et al. Connexin36 mediates gap junctional coupling of alpha-ganglion cells in mouse retina. J. Comp. Neurol. 485, 191–201 (2005).
    Hidaka, S., Akahori, Y. & Kurosawa, Y. Cellular/molecular dendrodendritic electrical synapses between mammalian retinal ganglion cells. J. Neurosci. 24, 10553–10567 (2005).
    Vogt, A., Hormuzdi, S. G. & Monyer, H. Pannexin1 and Pannexin2 expression in the developing and mature rat brain. Brain Res. Mol. Brain Res. 141, 113–120 (2005).
    Deans, M. R., Volgyi, B., Goodenough, D. A., Bloomfield, S. A. & Paul, D. L. Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 36, 703–712 (2002).
    Zhang, C. & Restrepo, D. Expression of connexin 45 in the olfactory system. Brain Res. 929, 37–47 (2002).
    Camalet, S., Duke, T., Jülicher, F. & Prost, J. Auditory sensitivity provided by self-tuned critical oscillations of hair cells. Proc. Natl Acad. Sci. USA 97, 3183–3188 (2000).
    Sohl, G., Maxeiner, S. & Willecke, K. Expression and functions of neuronal gap junctions. Nature Rev. Neurosci. 6, 191–200 (2005).