Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Physiology of the yeast kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source (2007)

  • Authors:
  • USP affiliated authors: GOMBERT, ANDREAS KAROLY - EP
  • USP Schools: EP
  • DOI: 10.1111/j.1567-1364.2006.00192.x
  • Subjects: CULTURA DE MICRORGANISMOS; FERMENTAÇÃO; FISIOLOGIA; GLICOSE; LEVEDURAS; METABOLISMO (FORMAÇÃO)
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1111/j.1567-1364.2006.00192.x (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: bronze
    Informações sobre o Citescore
  • Título: FEMS Yeast Research

    ISSN: 1567-1356

    Citescore - 2017: 2.91

    SJR - 2017: 1.308

    SNIP - 2017: 0.787


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      FONSECA, Gustavo Graciano; GOMBERT, Andreas Karoly; HEINZLE, Elmar; WITTMANN, Christoph. Physiology of the yeast kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source. FEMS Yeast Research, Amsterdam, v. 7, n. 3, p. 422-435, 2007. DOI: 10.1111/j.1567-1364.2006.00192.x.
    • APA

      Fonseca, G. G., Gombert, A. K., Heinzle, E., & Wittmann, C. (2007). Physiology of the yeast kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source. FEMS Yeast Research, 7( 3), 422-435. doi:10.1111/j.1567-1364.2006.00192.x
    • NLM

      Fonseca GG, Gombert AK, Heinzle E, Wittmann C. Physiology of the yeast kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source. FEMS Yeast Research. 2007 ;7( 3): 422-435.
    • Vancouver

      Fonseca GG, Gombert AK, Heinzle E, Wittmann C. Physiology of the yeast kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source. FEMS Yeast Research. 2007 ;7( 3): 422-435.

    Referências citadas na obra
    Aguilera J , Petit T , de Winde JH & Pronk JT (2005) Physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to high carbon dioxide concentrations. FEMS Yeast Res 5: 579–593.
    Autor: American Society for Testing and Materials
    Ano: 2003
    Belem MAF & Lee BH (1998) Production of bioingredients from Kluyveromyces marxianus grown on whey: an alternative. Crit Rev Food Sci Nut 38: 565–598.
    Bellaver LH , de Carvalho NMB , Abrahão-Neto J & Gombert AK (2004) Ethanol formation and enzyme activities around glucose-6-phosphate in Kluyveromyces marxianus CBS 6556 exposed to glucose or lactose excess. FEMS Yeast Res 4: 691–698.
    Belloch C , Barrio E , García MD & Querol A (1998) Inter- and intraspecific chromosome pattern variation in the yeast genus Kluyveromyces. Yeast 14: 1341–1354.
    Benthin S , Nielsen J & Villadsen J (1991) A simple and reliable method for the determination of cellular RNA content. Biotechnol Tech 5: 39–42.
    Blank LM & Sauer U (2004) TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates. Microbiology 150: 1085–1093.
    Bligh EG & Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: 911–917.
    Bonekamp FJ & Oosterom J (1994) On the safety of Kluyveromyces lactis– a review. Appl Microbiol Biotechnol 41: 1–3.
    Autor: Breunig
    Primeira página: 171
    Ano: 2003
    Bruinenberg PM , Waslander GW , van Dijken JP & Scheffers WA (1986) A comparative radiorespirometric study of glucose metabolism in yeasts. Yeast 2: 117–121.
    Caballero R , Olguín P , Cruz-Guerrero A , Gallardo F , García-Garibay M & Gómez-Ruiz L (1995) Evaluation of Kluyveromyces marxianus as baker's yeast. Food Res Int 28: 37–41.
    Chernyavskaya OG , Shishkanova NV , Il'chenko AP & Finogenova TV (2000) Synthesis of α-ketoglutaric acid by Yarrowia lipolytica yeast grown on ethanol. Appl Microbiol Biotechnol 53: 152–158.
    Cruz-Guerrero A , Barzana E , Garcia-Garibay M & Gomez-Ruiz L (1999) Dissolved oxygen threshold for the repression of endo-polygalacturonase production by Kluyveromyces marxianus. Process Biochemistry 34: 621–624.
    Deive FJ , Costas M & Longo MA (2003) Production of a thermostable extracellular lipase by Kluyveromyces marxianus. Biotechnol Lett 25: 1403–1406.
    Autor: de Winde
    Primeira página: 1
    Ano: 2003
    Dubois M , Gilles KA , Hamilton JK , Rebers PA & Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350–356.
    Dujon B , Sherman D , Fischer G et al. (2004) Genome evolution in yeasts. Nature 430: 35–44.
    Etschmann MMW , Sell D & Schrader J (2004) Medium optimization for the production of the aroma compound 2-phenylethanol using a genetic algorithm. J Mol Catalysis B – Enzymatic 29: 187–193.
    Furukawa K , Heinzle E & Dunn IJ (1983) Influence of oxygen on the growth of Saccharomyces cerevisiae in continuous culture. Biotechnol Bioeng 25: 2293–2317.
    Gombert AK , dos Santos MM , Christensen B & Nielsen J (2001) Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J Bacteriol 183: 1441–1451.
    Grba S , Stehlik-Tomas V , Stanzer D , Vahèiæ N & Škrlin A (2002) Selection of yeast strain Kluyveromyces marxianus for alcohol and biomass production on whey. Chem Biochem Eng Q 16: 13–16.
    Guiraud JP , Daurelles J & Galzy P (1981) Alcohol production from Jerusalem artichokes using yeasts with inulinase activity. Biotechnol Bioeng 23: 1461–1465.
    Autor: Heinzle
    Primeira página: 27
    Ano: 1991
    Autor: Heinzle
    Primeira página: 57
    Ano: 1982
    Hensing MC , Vrouwenvelder H , Hellinga C , Baartmans R & van Dijken JP (1994) Production of extracellular inulinase in high-cell-density fed-batch cultures of Kluyveromyces marxianus. Appl Microbiol Biotechnol 42: 516–521.
    Hensing MC , Rouwenhorst RJ , Heijnen JJ , van Dijken JP & Pronk JT (1995) Physiological and technological aspects of large-scale heterologous-protein production with yeasts. Antonie van Leeuwenhoek 67: 261–279.
    Autor: Herbert
    Primeira página: 210
    Ano: 1971
    Hoekstra R , Groeneveld P , Vanverseveld HW , Stouthamer AH & Planta RJ (1994) Transcription regulation of ribosomal protein genes at different growth rates in continuous cultures of Kluyveromyces yeasts. Yeast 10: 637–651.
    Kiers J , Zeeman AM , Luttik M et al. (1998) Regulation of alcoholic fermentation in batch and chemostat cultures of Kluyveromyces lactis CBS 2359. Yeast 14: 459–469.
    Kim JK , Tak KT & Moon JH (1998) A continuous fermentation of Kluyveromyces fragilis for the production of a highly nutritious protein diet. Aquacult Eng 18: 41–49.
    Kourkoutas Y , Dimitropoulou S , Kanellaki M , Marchant R , Nigam P , Banat IM & Koutinas AA (2002) High-temperature alcoholic fermentation of whey using Kluyveromyces marxianus IMB3 yeast immobilized on delignified cellulosic material. Biores Technol 82: 177–181.
    Autor: Kurtzman
    Ano: 1998
    Locher G , Hahnemann U , Sonnleitner B & Fiechter A (1993) Automatic bioprocess control. 4. A prototype batch of Saccharomyces cerevisiae. J Biotechnol 29: 57–74.
    Lukondeh T , Ashbolt NJ & Rogers PL (2003) Evaluation of Kluyveromyces marxianus as a source of yeast autolysates. J Ind Microbiol Biotechnol 30: 52–56.
    Martins DB , de Souza CG Jr , Simões DA & de Morais MA Jr (2002) The β-galactosidase activity in Kluyveromyces marxianus CBS 6556 decreases by high concentrations of galactose. Curr Microbiol 44: 379–382.
    Meijer MMC , Boonstra J , Verkleij AJ & Verrips CT (1998) Glucose repression in Saccharomyces cerevisiae is related to glucose concentration rather than the glucose flux. J Biol Chem 273: 24102–24107.
    Merico A , Capitanio D , Vigentini I , Ranzi BM & Compagno C (2004) How physiological and cultural conditions influence heterologous protein production in Kluyveromyces lactis. J Biotechnol 109: 139–146.
    Møller K , Bro C , Piškur J , Nielsen J & Olsson L (2002) Steady-state and transient-state analyses of aerobic fermentation in Saccharomyces kluyveri. FEMS Yeast Res 2: 233–244.
    Nissen TL , Schulze U , Nielsen J & Villadsen J (1997) Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143: 203–218.
    Olsson L & Nielsen J (1997) On-line and in situ monitoring of biomass in submerged cultivations. TIBTECH 15: 517–522.
    Parada G & Acevedo F (1983) On the relation of temperature and RNA content to the specific growth rate in Saccharomyces cerevisae. Biotechnol Bioeng 25: 2785–2788.
    Passador-Gurgel GC , Furlan SA , Meller JK & Jonas R (1996) Application of a microtitre reader system to the screening of inulinase-producing yeasts. Appl Microbiol Biotechnol 45: 158–161.
    Postma E & van den Broek PJ (1990) Continuous-culture study of the regulation of glucose and fructose transport in Kluyveromyces marxianus CBS 6556. J Bacteriol 172: 2871–2876.
    Postma E , Scheffers WA & van Dijken JP (1989a) Kinetics of growth and glucose transport in glucose-limited chemostat cultures in Saccharomyces cerevisiae CBS 8066. Yeast 5: 159–165.
    Postma E , Verduyn C , Scheffers WA & van Dijken JP (1989b) Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 55: 468–477.
    Rech R , Cassini CF , Secchi AR & Ayub MAZ (1999) Utilization of protein-hydrolyzed cheese whey for the production of β-galactosidase by Kluyveromyces marxianus. J Ind Microbiol Biotechnol 23: 91–96.
    Rolland F , Winderickx J & Thevelein JM (2002) Glucose-sensing and – signalling mechanisms in yeast. FEMS Yeast Res 2: 183–201.
    Rosenfeld E & Beauvoit B (2003) Role of the non-respiratory pathways in the utilization of molecular oxygen by Saccharomyces cerevisiae. Yeast 20: 1115–1144.
    Rouwenhorst RJ , Visser LE , van der Baan AA , Scheffers WA & van Dijken JP (1988) Production, distribution, and kinetic properties of inulinase in continuous culture of Kluyveromyces marxianus CBS 6556. Appl Environ Microbiol 54: 1131–1137.
    Rouwenhorst RJ , van der Baan AA , Scheffers WA & van Dijken JP (1991) Production and localization of β-fructosidase in asynchronus and synchronus chemostat cultures of yeasts. Appl Environ Microbiol 57: 557–562.
    Schultz N , Chang L , Hauck A , Reuss M & Syldatk C (2006) Microbial production of single-cell protein from deproteinized whey concentrates. Appl Microbiol Biotechnol 69: 515–520.
    Singh D , Nigam P , Banat IM , Marchant R & McHale AP (1998) Ethanol production at elevated temperatures and alcohol concentrations: part II – Use of Kluyveromyces marxianus IMB3. World J Microbiol Biotechnol 14: 823–834.
    Steensma HY , de Jongh FCM & Linnekamp M (1988) The use of electrophoretic karyotypes in the classification of yeasts: Kluyveromyces marxianus and K. lactis. Curr Genet 14: 311–317.
    Autor: Stephanopoulos
    Ano: 1998
    Swinkels BW , van Ooyen AJJ & Bonekamp FJ (1993) The yeast Kluveromyces lactis as an efficient host for heterologous gene expression. Antonie van Leeuwenhoek 64: 187–201.
    van den Berg JA , van der Laken KJ , van Ooyen AJJ et al. (1990) Kluyveromyces as a host for heterologous gene expression. Expression and secretion of prochymosin. Bio/Technol 8: 135–139.
    van Dijken JP , Weusthuis RA & Pronk JT (1993) Kinetics of growth and sugar consumption in yeast. Antonie van Leeuwenhoek 63: 343–352.
    van Hoek P , Flikweert MT , van der Aart QJM , Steensma HY , van Dijken JP & Pronk JT (1998a) Effects of pyruvate decarboxylase overproduction on flux distribution at the pyruvate branch point in Saccharomyces cerevisiae. Appl Environ Microbiol 64: 2133–2140.
    van Hoek HY , van Dijken JP & Pronk JT (1998b) Effect of specific growth rate on fermentative capacity of baker's yeast. Appl Environ Microbiol 64: 4226–4233.
    van Urk H , Mak PR , Scheffers WA & van Dijken JP (1988) Metabolic responses of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 upon transition from glucose limitation to glucose excess. Yeast 4: 283–291.
    Verduyn C , Postma E , Scheffers WA & van Dijken JP (1990) Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136: 395–403.
    Verduyn C , Postma E , Scheffers WA & van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8: 501–517.
    von Meyenburg HK (1969) Energetics of the budding cycle of Saccharomyces cerevisiae during glucose-limited aerobic growth. Arch Microbiol 66: 289–303.
    Wittmann C , Hans M & Bluemke W (2002) Metabolic physiology of aroma-producing Kluyveromyces marxianus. Yeast 19: 1351–1363.
    WolfK, BreunigK & BarthG (2003) (eds) Non-Conventional Yeasts in Genetics, Biochemistry and Biotechnology. Springer, Berlin.
    Yin Z , Wilson S , Hauser NC , Tournu H , Hoheisel JD & Brown AJ (2003) Glucose triggers different global responses in yeast, depending on the strength of the signal, and transiently stabilizes ribosomal protein mRNAs. Mol Microbiol 48: 713–724.
    Yoshida Y , Yokoi W , Wada Y , Ohishi K , Ito M & Sawada H (2004) Potent hypocholesterolemic activity of the yeast Kluyveromyces marxianus YIT 8292 in rats fed a high cholesterol diet. Biosci Biotechnol Biochem 68: 1185–1192.