Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Modeling stochastic gene expression under repression (2007)

  • Authors:
  • USP affiliated authors: HORNOS, JOSE EDUARDO MARTINHO - IFSC
  • USP Schools: IFSC
  • DOI: 10.1007/s00285-007-0090-x
  • Subjects: RNA MENSAGEIRO
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/s00285-007-0090-x (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green
    Informações sobre o Citescore
  • Título: Journal of Mathematical Biology

    ISSN: 0303-6812

    Citescore - 2017: 1.72

    SJR - 2017: 0.977

    SNIP - 2017: 1.204


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    IFSC89013830PROD013830
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      INNOCENTINI, G. C. P.; HORNOS, José Eduardo Martinho. Modeling stochastic gene expression under repression. Journal of Mathematical Biology, New York, Springer, v. 55, n. 3, p. Se 2007, 2007. DOI: 10.1007/s00285-007-0090-x.
    • APA

      Innocentini, G. C. P., & Hornos, J. E. M. (2007). Modeling stochastic gene expression under repression. Journal of Mathematical Biology, 55( 3), Se 2007. doi:10.1007/s00285-007-0090-x
    • NLM

      Innocentini GCP, Hornos JEM. Modeling stochastic gene expression under repression. Journal of Mathematical Biology. 2007 ; 55( 3): Se 2007.
    • Vancouver

      Innocentini GCP, Hornos JEM. Modeling stochastic gene expression under repression. Journal of Mathematical Biology. 2007 ; 55( 3): Se 2007.

    Referências citadas na obra
    Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs and mathematical tables. Nat. Bur. Standards Appl. Series, 55, U.S. Government Printing Office, Washington, D.C. (paperback edition published by Dover, New York) (1964)
    Ackers G.K., Johnson A.D. and Shea M.A. (1982). Quantitative model for gene regulation by λ phage repressor. Proc. Natl. Acad. Sci. USA 79: 1129–1133
    Becskei A. and Serrano L. (2000). Engineering stability in gene networks by autoregulation. Nature 405: 590–593
    Berg O.G. (1978). A model for the statistical fluctuations of protein numbers in a microbial population. J. Theor. Biol. 71: 587–603
    Bhalla U.S. and Iyengar R. (1999). Emergent properties of networks of biological signaling pathways. Science 283: 381–387
    Blake W.J., Kaern M., Cantor C.R. and Collins J.J. (2003). Noise in eukaryotic gene expression. Nature 422: 633–637
    Cook D.L., Gerber A.N. and Tapscott S.J. (1998). Modeling stochastic gene expression: Implications for haploinsufficiency. Proc. Natl. Acad. Sci. USA 95: 15641–15646
    von Dassow G., Meir E., Munro E.M. and Odell G.M. (2000). The segment polarity network is a robust developmental module. Nature 406: 188–192
    Elowitz M.B. and Leibler S. (2000). A synthetic oscillatory network of transcriptional regulators. Nature 403: 335–338
    Gardner T.S., Cantor C.R. and Collins J.J. (2000). Construction of genetic toggle switch in Escherichia coli. Nature 403: 339–342
    Gillespie D.T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81: 2340–2361
    Hasty J., Pradines J., Dolnik M. and Collins J.J. (2000). Noise-based switches and amplifiers for gene expression. Proc. Natl. Acad. Sci. USA 97: 2075–2080
    Hornos J.E.M., Schultz D., Innocentini G.C.P., Wang J., Walczak A.M., Onuchic J.N. and Wolynes P.G. (2005). Self-regulating gene: An exact solution. Phys. Rev. E 72: 051907
    Innocentini, G.C.P., Hornos, J.E.M.: Stochastic gene expression: approaching the equilibrium (in preparation)
    van Kampen N.G. (1992). Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam
    Kennell D. and Riezman H. (1977). Transcription and translation initiation frequencies of the escherichia coli lac operon. J. Mol. Biol. 114: 1–21
    Ko M.S.H. (1991). A stochastic model for gene induction. J. Theor. Biol. 153: 181–194
    McAdams H.H. and Arkin A. (1997). Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA 94: 814–819
    McAdams H.H. and Arkin A. (1999). Its a noisy business! genetic regulation at the nanomolar scale. Trends Genet. 15: 65–69
    Monod J. and Jacob F. (1961). Genetic regulatory mechanisms in synthesis of protein. J. Mol. Biol. 3: 318–356
    Ozbudak E.M., Thattai M., Kurtser I., Grossman A.D. and van Oudenaarden A. (2002). Regulation of noise in the expression of single gene. Nat. Genet. 31: 69–73
    Paulsson J. (2004). Summing up the noise in gene networks. Nature 427: 415–418
    Paulsson J., Berg O.G. and Ehrenberg M. (2000). Stochastic focusing: Fluctuation-enhanced sensitivity of intracellular regulation. Proc. Natl. Acad. Sci. USA 97: 7148–7153
    Pedraza J.M. and van Oudenaarden A. (2005). Noise propagation in gene networks. Science 307: 1965–1969
    Ptashne M. (1992). A Genetic Switch: Phage λ and Higher Organisms. Cell Press/Blackwell, Cambridge
    van de Putte P. and Goosen N. (1992). Dna inversions in phages and bacteria. Trends Genet. 8: 457–462
    Siegele D.A. and Hu J.C. (1997). Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proc. Natl. Acad. Sci.USA 94: 8168–8172
    Thattai M. and van Oudenaarden A. (2001). Intrinsic noise in gene regulatory networks. Proc. Natl. Acad. Sci. USA 98: 8614–8619
    Walczak A.M., Sasai M. and Wolynes P.G. (2005). Self-consistent proteomic field theory of stochastic gene switches. Biophys. J. 88: 828–850