Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Symmetric-triangular decomposition and its applications: part II: preconditioners for indefinite systems (2008)

  • Authors:
  • USP affiliated authors: CUMINATO, JOSÉ ALBERTO - ICMC
  • USP Schools: ICMC
  • DOI: 10.1007/s10543-008-0160-5
  • Subjects: MECÂNICA DOS FLUÍDOS COMPUTACIONAL
  • Language: Inglês
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10543-008-0160-5 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC1665754-10PROD-1665754
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      WU, Xiaonan; GOLUB, Gene H.; CUMINATO, José Alberto; YUAN, JinYun. Symmetric-triangular decomposition and its applications: part II: preconditioners for indefinite systems. BIT Numerical Mathematics[S.l.], v. 48, n. 1, p. 139-162, 2008. Disponível em: < http://www.springerlink.com.w10077.dotlib.com.br/content/m92612286177j103/fulltext.pdf > DOI: 10.1007/s10543-008-0160-5.
    • APA

      Wu, X., Golub, G. H., Cuminato, J. A., & Yuan, J. Y. (2008). Symmetric-triangular decomposition and its applications: part II: preconditioners for indefinite systems. BIT Numerical Mathematics, 48( 1), 139-162. doi:10.1007/s10543-008-0160-5
    • NLM

      Wu X, Golub GH, Cuminato JA, Yuan JY. Symmetric-triangular decomposition and its applications: part II: preconditioners for indefinite systems [Internet]. BIT Numerical Mathematics. 2008 ; 48( 1): 139-162.Available from: http://www.springerlink.com.w10077.dotlib.com.br/content/m92612286177j103/fulltext.pdf
    • Vancouver

      Wu X, Golub GH, Cuminato JA, Yuan JY. Symmetric-triangular decomposition and its applications: part II: preconditioners for indefinite systems [Internet]. BIT Numerical Mathematics. 2008 ; 48( 1): 139-162.Available from: http://www.springerlink.com.w10077.dotlib.com.br/content/m92612286177j103/fulltext.pdf

    Referências citadas na obra
    M. Arioli, I. S. Duff, and P. P. M. de Rijk, On the augmented system approach to sparse least-squares problems, Numer. Math., 55 (1989), pp. 667–684.
    K. J. Arrow, L. Hurwicz, and H. Uzawa, Studies in Linear and Nonlinear Programming, Stanford University Press, Stanford, CA, 1958.
    A. Battermann and E. W. Sachs, Block preconditioners for KKT systems arising in PDE-governed optimal control problems, in Fast Solution of Discretized Optimization Problems, K.-H. Hoffmann, R. H. W. Hoppe, and W. Schulz, eds., Birkhäuser, Berlin, 2000, 2001, pp. 1–18.
    M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta Numer., 14 (2005), pp. 1–137.
    A. R. Bergen, Power Systems Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1986.
    Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
    Å. Björck, Numerical stability of methods for solving augmented systems, in Recent Developments in Optimization Theory and Nonlinear Analysis, Jerusalem, 1995, Contemp. Math., vol. 204, pp. 51–60, Am. Math. Soc., Providence, RI, 1997.
    Å. Björck and C. C. Paige, Solution of augmented linear systems using orthogonal factorization, BIT, 34 (1994), pp. 1–24.
    Å. Björck and J. Y. Yuan, Preconditioner for least squares problems by LU factorization, ETNA, 8 (1999), pp. 26–35.
    A. Bossavit, Mixed systems of algebraic equations in computational electromagnetics, COMPEL, 17 (1998), pp. 59–63.
    D. Braess, Finite Elements. Theory, Fast Solvers, and Applications in Solid Mechanics, 2nd edn., Cambridge University Press, Cambridge, 2001.
    J. H. Bramble and J. E. Pasciak, A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems, Math. Comput., 50 (1988), pp. 1–17.
    F. Brezzi, On the existence, uniqueness, and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Anal. Numer., 8 (1974), pp. 129–151.
    C. Cordeiro, New ST Algorithms, Master dissertation, UFPR, Brazil, 2002.
    C. Cordeiro and J. Y. Yuan, Row-wise algorithms of ST decomposition, Appl. Math. Comput., 175 (2006), pp. 748–761.
    H. Elman, A. Ramage, and D. Silvester, Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow, ACM Trans. Math. Softw., 33(2) (2007), pp. 251–268.
    H. Elman and D. Silvester, Fast nonsymmetric iterations and preconditioning for Navier–Stokes equations, SIAM J. Sci. Comput., 17 (1996), pp. 33–46.
    H. Elman, D. J. Silvester, and A. Wathen, Iterative methods for problems in computational fluid dynamics, in Iterative Methods in Scientific Computing, R. Chan, T. Chan and G. Golub, eds., Springer, Singapore, 1997, pp. 271–327.
    B. Fischer, A. Ramage, D. J. Silvester, and A. J. Wathen, Minimum residual methods for augmented systems, BIT, 38 (1998), pp. 527–543.
    P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press [Harcourt Brace Jovanovich], London, 1981.
    R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer Series in Computational Physics, Springer, New York, 1984.
    G. H. Golub and C. Greif, On solving block-structured indefinite linear systems, SIAM J. Sci. Comput., 24 (2003), pp. 2076–2092.
    G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences, 3rd edn., Johns Hopkins University Press, Baltimore, MD, 1996.
    G. H. Golub, X. Wu, and J. Y. Yuan, SOR-Like methods for augmented systems, BIT, 41 (2001), pp. 71–85.
    G. H. Golub and J. Y. Yuan, Symmetric-triangular decomposition and its applications – Part I: theorems and algorithms, BIT, 42 (2002), pp. 814–822.
    E. Haber and U. M. Ascher, Preconditioned all-at-once methods for large, sparse parameter estimation problems, Inverse Probl., 17 (2001), pp. 1847–1864.
    E. Haber and J. Modersitzki, Numerical methods for volume-preserving image registration, Inverse Probl., 20 (2004), pp. 1621–1638.
    E. L. Hall, Computer Image Processing and Recognition, Academic, New York, 1979.
    J. Liesen, E. de Sturler, A. Sheffer, Y. Aydin, and C. Siefert, Preconditioners for indefinite linear systems arising in surface parameterization, in Proc. 10th International Meshing Round Table, pp. 71–81, 2001.
    T. Lyche, T. K. Nilssen, and R. Winther, Preconditioned iterative methods for scattered data interpolation, Adv. Comput. Math., 17 (2002), pp. 237–256.
    H. M. Markowitz, Portfolio Selection: Efficient Diversification of Investments, Wiley, New York, 1959.
    T. P. Mathew, M. Sarkis, and C. E. Schaerer, Analysis of block matrix preconditioner for elliptic optimal control problems, Numer. Linear Algebr. Appl., 14 (2007), pp. 257–279.
    S. G. Nash and A. Sofer, Preconditioned reduced matrices, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 47–68.
    J. Nocedal and S. Wright, Numerical Optimization, Springer, New York, 1999.
    C. Santiago, Numerical Experiments on ST decomposition, Master dissertation, UFPR, Brazil, 2002.
    C. Santiago and J. Y. Yuan, Modified ST algorithms and numerical experiments, Appl. Numer. Math., 47 (2003), pp. 237–253.
    C. H. Santos, B. P. B. Silva, and J. Y. Yuan, Block SOR methods for rank deficient least squares problems, J. Comput. Appl. Math., 100 (1998), pp. 1–9.
    C. H. Santos and J. Y. Yuan, Preconditioned conjugate gradient methods for rank deficient least squares problems, Int. J. Comput. Math., 72 (1999), pp. 509–518.
    G. Strang, Introduction to Linear Algebra, 3rd edn., Wellesley-Cambridge Press, Wellesley, MA, 2003.
    T. Stykel, Balanced truncation model reduction for semidiscretized Stokes equations, Linear Algebra Appl., 415 (2006), pp. 262–289.
    F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (2001), pp. 235–286.
    R. J. Vanderbei and T. J. Carpenter, Symmetric indefinite systems for interior point methods, Math. Progr., 58 (1993), pp. 1–32.
    S. Wright, Stability of augmented system factorizations in interior-point methods, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 191–222.
    S. J. Wright, Primal–Dual Interior Point Methods, SIAM, Philadelphia, PA, 1997.
    S. Wright, Interior methods for nonlinear optimization, SIAM Rev., 44 (2002), pp. 525–597.
    X. Wu, B. P. B. Silva, and J. Y. Yuan, Conjugate gradient method for rank deficient saddle point problems, Numer. Algorithms, 35 (2004), pp. 139–154.
    J. Y. Yuan, Iterative Methods for Generalized Least Squares Problems, Ph.D. thesis, IMPA, Rio de Janeiro, Brazil, 1993.
    J. Y. Yuan, Numerical methods for generalized least squares problems, J. Comput. Appl. Math., 66 (1996), pp. 571–584.
    J. Y. Yuan, Quadratic eigenvalue functionals of ST preconditioners for saddle point problems, Tech. Report, Universidade Federal do Paraná, Brazil, 2007.
    J. Y. Yuan and A. N. Iusem, Preconditioned conjugate gradient method for generalized least squares problems, J. Comput. Appl. Math., 71 (1996), pp. 287–297.
    J. Y. Yuan and A. N. Iusem, Preconditioned SOR methods for generalized least squares problems, Acta Math. Appl. Sin., 16 (2000), pp. 130–139.
    J. Y. Yuan and X. Q. Jin, Direct iterative methods for rank deficient generalized least squares problems, J. Comput. Math., 18 (2000), pp. 437–446.