Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Augmented Lagrangian methods under the constant positive linear dependence constraint qualification (2008)

  • Authors:
  • USP affiliated authors: BIRGIN, ERNESTO JULIAN GOLDBERG - IME
  • USP Schools: IME
  • DOI: 10.1007/s10107-006-0077-1
  • Subjects: PROGRAMAÇÃO NÃO LINEAR
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/s10107-006-0077-1 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ANDREANI, Roberto; BIRGIN, Ernesto Julian Goldberg; MARTINEZ, Jesus Manuel; SCHUVERDT, M. L. Augmented Lagrangian methods under the constant positive linear dependence constraint qualification. Mathematical Programming, New York, v. 111, n. 1-2, p. 5-32, 2008. DOI: 10.1007/s10107-006-0077-1.
    • APA

      Andreani, R., Birgin, E. J. G., Martinez, J. M., & Schuverdt, M. L. (2008). Augmented Lagrangian methods under the constant positive linear dependence constraint qualification. Mathematical Programming, 111( 1-2), 5-32. doi:10.1007/s10107-006-0077-1
    • NLM

      Andreani R, Birgin EJG, Martinez JM, Schuverdt ML. Augmented Lagrangian methods under the constant positive linear dependence constraint qualification. Mathematical Programming. 2008 ; 111( 1-2): 5-32.
    • Vancouver

      Andreani R, Birgin EJG, Martinez JM, Schuverdt ML. Augmented Lagrangian methods under the constant positive linear dependence constraint qualification. Mathematical Programming. 2008 ; 111( 1-2): 5-32.

    Referências citadas na obra
    Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: On Augmented Lagrangian methods with general lower-level constraints. Technical Report MCDO-050303, Department of Applied Mathematics, UNICAMP, Brazil (2005)
    Andreani R., Martínez J.M. and Schuverdt M.L. (2005). On the relation between Constant Positive linear dependence condition and quasinormality constraint qualification. J. Optim. Theory Appl. 125: 473–485
    Bertsekas D.P. (2003). Nonlinear programming. Athena Scientific, Belmont
    Birgin E.G., Castillo R. and Martínez J.M. (2005). Numerical comparison of Augmented Lagrangian algorithms for nonconvex problems. Comput. Optim. Appl. 31: 31–56
    Birgin E.G. and Martínez J.M. (2002). Large-scale active-set box-constrained optimization method with spectral projected gradients. Comput. Optim. Appl. 23: 101–125
    Birgin E.G., Martínez J.M. and Raydan M. (2000). Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10: 1196–1211
    Birgin E.G., Martínez J.M. and Raydan M. (2001). Algorithm 813: SPG - Software for convex-constrained optimization. ACM Trans. Math. Softw. 27: 340–349
    Birgin E.G., Martínez J.M. and Raydan M. (2003). Inexact spectral projected gradient methods on convex sets. IMA J. Numer. Anal. 23: 539–559
    Bongartz I., Conn A.R., Gould N.I.M. and Toint Ph.L. (1995). CUTE: constrained and unconstrained testing environment. ACM Trans. Math. Softw. 21: 123–160
    Conn A.R., Gould N.I.M. and Toint Ph.L. (1992). LANCELOT: A Fortran Package for Large scale Nonlinear Optimization. Springer, Berlin Heidelberg New York
    Conn A.R., Gould N.I.M., Sartenaer A. and Toint Ph.L. (1996). Convergence properties of an Augmented Lagrangian algorithm for optimization with a combination of general equality and linear constraints. SIAM J. Optim. 6: 674–703
    Conn A.R., Gould N.I.M. and Toint Ph.L. (1991). A globally convergent Augmented Lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J. Numer. Anal. 28: 545–572
    Diniz-Ehrhardt M.A., Gomes-Ruggiero M.A., Martínez J.M. and Santos S.A. (2004). Augmented Lagrangian algorithms based on the spectral projected gradient for solving nonlinear programming problems. J. Optim. Theory Appl. 123: 497–517
    Dirkse S.P. and Ferris M.C. (1995). The PATH solver: A non-monotone stabilization scheme for mixed complementarity problems. Optim. Methods Softw. 5: 123–156
    Dolan E.D. and Moré J.J. (2002). Benchmarking optimization software with performance profiles. Math. Program. 91: 201–213
    Dostál Z. (2005). Inexact semimonotonic augmented Lagrangians with optimal feasibility convergence for convex bound and equality constrained quadratic programming. SIAM J. Numer. Anal. 43: 96–115
    Dostál Z., Friedlander A. and Santos S.A. (2003). Augmented Lagrangian with adaptive precision control for quadratic programming with simple bounds and equality constraints. SIAM J. Optim. 13: 1120–1140
    Dostál Z., Gomes F.A.M. and Santos S.A. (2000). Duality based domain decomposition with natural coarse space for variational inequalities. J. Comput. Appl. Math. 126: 397–415
    Facchinei F., Fischer A. and Kanzow C. (1998). Regularity properties of a semismooth reformulation of variational inequalities. SIAM J. Optim. 8: 850–869
    Facchinei F., Fischer A. and Kanzow C. (1997). A semismooth Newton method for variational inequalities: The case of box constraints. In: Ferris, M.C. and Pang, J.-S. (eds) Complementarity and Variational Problems: State of the Art., pp 76–90. SIAM, Philadelphia
    Facchinei F., Fischer A., Kanzow C. and Peng J.-M. (1999). A simply constrained reformulation of KKT systems arising from variational inequalities. Appl. Math. Optim. 40: 19–37
    Facchinei F. and Pang J.-S. (2000). Finite-Dimensional Variational Inequalities and Complementary Problems. Springer Series in Operation Research, Berlin Heidelberg New York, Springer
    Ferris, M.C., Munson, T.S.: PATH 4.6 User Manual, http://www.gams.com/solvers/solvers.htm#PATH
    Fletcher R. (1987). Practical Methods of Optimization. Academic, London
    Hager W.W. (1993). Analysis and implementation of a dual algorithm for constrained optimization. J. Optim. Theory Appl. 79: 37–71
    Harker P.T. and Pang J.-S. (1990). Finite-dimensional variational inequality and nonlinear complementary problems: a survey of theory, algorithms and applications. Math. Program. 48: 161–220
    Luo Z.-Q., Pang J.-S. and Ralph D. (1996). Mathematical programs with equilibrium constraints. Cambridge University Press, Cambridge
    Mangasarian O.L. and Fromovitz S. (1967). The Fritz-John necessary optimality conditions in presence of equality and inequality constraints. J. Math. Anal. Appl. 17: 37–47
    Qi L. and Wei Z. (2000). On the constant positive linear dependence condition and its application to SQP methods. SIAM J. Optim. 10: 963–981
    Raydan M. (1993). On the Barzilai and Borwein choice of steplength for the gradient method. IMA J. Numer. Anal. 13: 321–326
    Raydan M. (1997). The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim. 7: 26–33
    Rockafellar R.T. (1973). The multiplier method of Hestenes and Powell applied to convex. J. Optim. Theory Appl. 12: 555–562
    Rockafellar R.T. (1993). Lagrange multipliers and optimality. SIAM Rev. 35: 183–238
    Shapiro A. (2005). Sensitivity analysis of parameterized variational inequalities. Math. Oper. Res. 30: 109–126