Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Regulation of xylanase in Aspergillus phoenicis: a physiological and molecular approach (2008)

  • Authors:
  • USP affiliated authors: TERENZI, HECTOR FRANCISCO - FFCLRP ; JORGE, JOAO ATILIO - FFCLRP ; POLIZELI, MARIA DE LOURDES TEIXEIRA DE MORAES - FFCLRP
  • USP Schools: FFCLRP; FFCLRP; FFCLRP
  • DOI: 10.1007/s10295-007-0290-9
  • Subjects: ASPERGILLUS; BIOLOGIA; GENES
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/s10295-007-0290-9 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Journal of Industrial Microbiology and Biotechnology

    ISSN: 1367-5435

    Citescore - 2017: 3.21

    SJR - 2017: 1.107

    SNIP - 2017: 1.02


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FCLRP20800040006-Spcd 1714862
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      RIZZATTI, Ana Carolina Segato; FREITAS, Fernanda Zanolli; BERTOLINI, Maria Célia; et al. Regulation of xylanase in Aspergillus phoenicis: a physiological and molecular approach. Journal of Industrial Microbiology and Biotechnology, Heidelberg, v. 35, n. 4, p. 137-244, 2008. DOI: 10.1007/s10295-007-0290-9.
    • APA

      Rizzatti, A. C. S., Freitas, F. Z., Bertolini, M. C., Peixoto-Nogueira, S. de C., Terenzi, H. F., Jorge, J. A., & Polizeli, M. de L. T. de M. (2008). Regulation of xylanase in Aspergillus phoenicis: a physiological and molecular approach. Journal of Industrial Microbiology and Biotechnology, 35( 4), 137-244. doi:10.1007/s10295-007-0290-9
    • NLM

      Rizzatti ACS, Freitas FZ, Bertolini MC, Peixoto-Nogueira S de C, Terenzi HF, Jorge JA, Polizeli M de LT de M. Regulation of xylanase in Aspergillus phoenicis: a physiological and molecular approach. Journal of Industrial Microbiology and Biotechnology. 2008 ; 35( 4): 137-244.
    • Vancouver

      Rizzatti ACS, Freitas FZ, Bertolini MC, Peixoto-Nogueira S de C, Terenzi HF, Jorge JA, Polizeli M de LT de M. Regulation of xylanase in Aspergillus phoenicis: a physiological and molecular approach. Journal of Industrial Microbiology and Biotechnology. 2008 ; 35( 4): 137-244.

    Referências citadas na obra
    Bhella RS, Altosaar I (1988) Role of cAMP in the mediation of glucose catabolite repression of glucoamylase synthesis in Aspergillus awamori. Curr Genet 14:247–252
    Brühlmann F, Leupin M, Erismann KH, Fiechter A (2000) Enzymatic degumming of ramie bast fibers. J Biotechnol 76:43–50
    Camacho NA, Aguilar OG (2003) Production, purification and characterization of a low molecular mass xylanases from Aspergillus sp. and its application in bakery. Appl Biochem Biotechnol 104:159–172
    Collins T, Gerday C, Feller G (2005) Xylanases, xylanases families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23
    Csiszár E, Urbánszki K, Szakás G (2001) Biotreatment of desized cotton fabric by commercial cellulase and xylanase enzymes. J Mol Catal B Enzym 11:1065–1072
    Ghosh M, Nanda G (1994) Physiological studies on xylose induction and glucose repression of xylanolytic enzymes in Aspergillus sydowii MG49. FEBS Microbiol Lett 117:151–156
    Graaff LH de, van den Broeck HC, Ooijen AJJ (1994) Regulation of the xylanase-encoding xlnA gene of Aspergillus tubigensis. Mol Microbiol 12:479–490
    Hrmová M, Petraková E, Biely P (1991) Induction of cellulose and xylan-degrading enzyme system in Aspergillus terreus by homo and heterodisaccharides composed of glucose and xylose. J Gen Microbiol 137:541–547
    Klich MA, Pitt JL (1998) A laboratory guide to common Aspergillus species and their telemorphs. Published by Commonwealth Scientific and Industrial Research Organization, Division of Food Processing
    Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbial Rev 23:411–456
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:267–275
    Mach RL, Strauss J, Zeilinger S, Schindler M, Kubicek CP (1996) Carbon catabolite repression of xylanase I (xyn1) gene expression in Trichoderma reesei. Mol Microbiol 21(6):1273–1281
    Marui J, Tanaka A, Mimura S, de Graaff LH, Visser J, Kitamoto N, Kato M, Kobayashi T, Tsukagoshi N (2002) A transcriptional activator, AoXlnR, controls the expression of genes encoding xylanolytic enzymes in Aspergillus oryzae. Fungal Genet Biol 35:157–169
    McIlvine TC (1921) A buffer solution for colorimetric comparison. J Biol Chem 49:183–186
    Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–429
    Miyazaki K, Hirase T, Kojima Y, Flint HJ (2005) Medium- to large-sized xylo-oligosaccharides are responsible for xylanase induction in Prevotella bryantii B14. Microbiology 15:4121–4125
    Morosoli R, Durand S, Boucher F (1989) Stimulation of xylanases synthesis in Cryptococcus albidus by cAMP. FEMS Microbiol Lett 57:57–60
    Nakanishi K, Yasui T (1980) Kinetic studies on xylanase induction by β-xylosidase in Streptomyces sp. Agric Biol Chem 44:1885–1889
    Ogasawara W, Shida Y, Furukawa T, Shimada R, Nakagawa S, Kawamura M, Yagyu T, Kosuge A, Xu J, Nogawa M, Okada H, Morikawa Y (2006) Cloning, functional expression and promoter analysis of xylanase III gene from Trichoderma reesei. Appl Microbiol Biotechnol 72:995–1003
    Orejas M, MacCabe AP, Pérez-Gonzales JA, Kumar S, Ramón D (2001) The wide-domain carbon catabolite repressor CreA indirectly controls expression of the Aspergillus nidulans xlnB gene, encoding the acidic endo-β-(1,4)-xylanase X24. J Bacteriol 183(5):1517–23
    Peij NNME van, Visser J, de Graaff LH (1998) Isolation and analysis of xlnR, encoding transcriptional activator co-ordinating xylanolytic expression in Aspergillus niger. Mol Microbiol 27:131–142
    Piñaga F, Fernández-Espinar MT, Vallés S, Ramón D (1994) Xylanase production in Aspergillus nidulans, induction and carbon catabolite repression. FEMS Microbiol Lett 115:319–324
    Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591
    Prathumpai W, McIntyre M, Nielsen J (2004) The effect of CreA in glucose and catabolism in Aspergillus nidulans. Appl Microbiol Biotechnol 63:748–753
    Raper KB, Fennell DI (1965) The genus Aspergillus. Williams & Wilkins, Baltimore
    Ruijter GJG, Visser J (1997) Carbon repression in Aspergilli. FEMS Microbiol Lett 151:103–114
    Saarelainen R, Paloheimo M, Fageström R, Suominen PL, Nevalainen KMH (1993) Cloning, sequencing and enhanced expression of the Trichoderma reesei endoxylanase II (pI 9) gene xln2. Mol Gen Genet 241:497–503
    Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual, 3rd edn. Cold Spring Harbour Laboratory Press, Cold Spring Harbour
    Sandrim VC, Rizzatti ACS, Terenzi HF, Jorge JA Milagres AMF, Polizeli MLTM (2005) Purification and biochemical characterization of two xylanases produced by Aspergillus caespitosus and their potential of kraft pulp bleaching. Process Biochem 40(5):1823–1828
    Sokolovsky V, Kaldenhoff R, Ricci M, Russo VEA (1995) Fast and reliable mini-prep RNA extraction from Neurospora crassa. Fungal Genet Newsl 37:41–43
    Strauss J, Mach RL, Zeilinger S, Stoffler G, Wolschek M, Hartler G, Kubicek CP (1995) Cre I the carbon catabolite repressor protein from Trichoderma reesei. FEBS Lett 376:103–107
    Thevelein JM (1994) Signal transduction in yeast. Yeast 10:1753–1790
    Törrönen A, Affenzeller KA, Hofer F, Myohanen TA, Blass D, Harkki A, Kubicek CP (1992) The two major xylanases from Trichoderma reesei: characterization of both enzymes and genes. Biotechnology 10:1461–1465
    Twomey LN, Pluske JR, Rowe JB, Choct M, Brown W, McConnell MF, Pethick DW (2003) The effects of increasing levels of soluble non-starch polysaccharides and inclusion of feeds enzymes in dog diets on faecal quality and digestibility. Anim Feed Sci Technol 108(1–4):71–82
    Vogel HF (1964) Distribution of lysine pathways among fungi: evolutionary implications. Am Nat 98:435–446
    Vries RP de, Visser J, de Graaff (1999) CreA modulates the XlnR-induced expression on xylose of Aspergillus niger genes involved in xylan degradation. Res Microbiol 150:281–285
    Weiland JJ (1997) Rapid procedure for the extraction of DNA from fungal spores and mycelia. Fungal Genet Newsl 44:60–63
    Wong KKY, Tan LUL, Saddler JN (1998) Multiplicity of β-1,4-xylanase in microorganisms, functions and applications. Microbiol Rev 52(3):305–317
    Xu J, Nogawa M, Okada H, Morikawa Y (2000) Regulation of xyn3 gene expression in Trichoderma reesei PC-3-7. Appl Microbiol Biotechnol 54:370–375
    Zonneveld BJM (1976) The effect of glucose and manganese on adenosine-3′,5′-monophosphate levels during growth and differentiation of Aspergillus nidulans. Arch Microbiol 108:41–44