Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Chronic resistance training decreases MuRF-1 and Atrogin-1 gene expression but does not modify Akt, GSK-3 ´BETA` p70S6K levels in rats (2009)

  • Authors:
  • USP affiliated authors: LANCHA JUNIOR, ANTONIO HERBERT - EEFE ; CARVALHO, CARLA ROBERTA DE OLIVEIRA - ICB ; SEELAENDER, MARILIA CERQUEIRA LEITE - ICB
  • USP Schools: EEFE; ICB; ICB
  • DOI: 10.1007/s00421-009-1033-6
  • Subjects: MÚSCULOS DO SISTEMA RESPIRATÓRIO;
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00421-009-1033-6 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICB12100024602PC-ICB BMB SEP 2009
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ZANCHI, Nelo Eidy; LANCHA JUNIOR, Antonio Herbert; SIQUEIRA FILHO, Mário Alves de; et al. Chronic resistance training decreases MuRF-1 and Atrogin-1 gene expression but does not modify Akt, GSK-3 ´BETA` p70S6K levels in rats. European Journal of Applied physiology, Berlin, v. 106, n. ju 2009, p. 415-423, 2009. Disponível em: < http://www.springerlink.com/content/ap74v8r84kg834k4/fulltext.pdf > DOI: 10.1007/s00421-009-1033-6.
    • APA

      Zanchi, N. E., Lancha Junior, A. H., Siqueira Filho, M. A. de, Lira, F. S., Rosa, J. C., Yamashita, A. S., et al. (2009). Chronic resistance training decreases MuRF-1 and Atrogin-1 gene expression but does not modify Akt, GSK-3 ´BETA` p70S6K levels in rats. European Journal of Applied physiology, 106( ju 2009), 415-423. doi:10.1007/s00421-009-1033-6
    • NLM

      Zanchi NE, Lancha Junior AH, Siqueira Filho MA de, Lira FS, Rosa JC, Yamashita AS, Carvalho CR de O, Seelaender M. Chronic resistance training decreases MuRF-1 and Atrogin-1 gene expression but does not modify Akt, GSK-3 ´BETA` p70S6K levels in rats [Internet]. European Journal of Applied physiology. 2009 ; 106( ju 2009): 415-423.Available from: http://www.springerlink.com/content/ap74v8r84kg834k4/fulltext.pdf
    • Vancouver

      Zanchi NE, Lancha Junior AH, Siqueira Filho MA de, Lira FS, Rosa JC, Yamashita AS, Carvalho CR de O, Seelaender M. Chronic resistance training decreases MuRF-1 and Atrogin-1 gene expression but does not modify Akt, GSK-3 ´BETA` p70S6K levels in rats [Internet]. European Journal of Applied physiology. 2009 ; 106( ju 2009): 415-423.Available from: http://www.springerlink.com/content/ap74v8r84kg834k4/fulltext.pdf

    Referências citadas na obra
    Armstrong DD, Esser KA (2005) Wnt/beta-catenin signaling activates growth-control genes during overload-induced skeletal muscle hypertrophy. Am J Physiol Cell Physiol 289:C853–C859
    Bickel CS, Slade J, Mahoney E, Haddad F, Dudley GA, Adams GR (2005) Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise. J Appl Physiol 98:482–488
    Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019
    Bolster DR, Kimball SR, Jefferson LS (2003) Translational control mechanisms modulate skeletal muscle gene expression during hypertrophy. Exerc Sport Sci 31:111–116
    Carvalho CR, Thirone AC, Gontijo JA, Velloso LA, Saad MJ (1997) Effect of captopril losartan, and bradykinin on early steps of insulin action. Diabetes 46:1950–1957
    Childs TE, Spangenburg EE, Vyas DR, Booth FW (2003) Temporal alterations in protein signaling cascades during recovery from muscle atrophy. Am J Physiol Cell Physiol 285:C391–C398
    Coffey VG, Hawley JA (2007) The molecular bases of training adaptation. Sports Med 37:737–763
    Coffey VG, Reeder DW, Lancaster GI, Yeo WK, Febbraio MA, Yaspelkis BB 3rd, Hawley JA (2007) Effect of high-frequency resistance exercise on adaptive responses in skeletal muscle. Med Sci Sports Exerc 39:2135–2144
    Duncan R, Hershey JW (1985) Regulation of initiation factors during translational repression caused by serum depletion. Abundance, synthesis, and turnover rates. J Biol Chem 260:5486–5492
    Duncan ND, Williams DA, Lynch GS (1998) Adaptations in rat skeletal muscle following long-term resistance exercise training. Eur J Appl Physiol 77:372–378
    Glynn EL, Lujan HL, Kramer VJ, Drummond MJ, DiCarlo SE, Rasmussen BB (2008) A chronic increase in physical activity inhibits fed-state mTOR/S6K1 signaling and reduces IRS-1 serine phosphorylation in rat skeletal muscle. Appl Physiol Nutr Metab 33:93–101
    Haddad F, Adams GR (2002) Selected contribution: acute cellular and molecular responses to resistance exercise. J Appl Physiol 93:394–403
    Hansen AK, Fischer CP, Plomgaard P, Andersen JL, Saltin B, Pedersen BK (2005) Skeletal muscle adaptation: training twice every second day vs. training once daily. J Appl Physiol 98:93–99
    Hubal MJ, Gordish-Dressman H, Thompson PD, Price TB, Hoffman EP, Angelopoulos TJ, Gordon PM, Moyna NM, Pescatello LS, Visich PS, Zoeller RF, Seip RL, Clarkson PM (2005) Variability in muscle size and strength gain after unilateral resistance training. Med Sci Sports Exerc 37:964–972
    Kim PL, Staron RS, Phillips SM (2005) Fasted-state skeletal muscle protein synthesis after resistance exercise is altered with training. J Physiol 568:283–290
    Klitgaard H (1988) A model for quantitative strength training of hindlimb muscles of the rat. J Appl Physiol 64:1740–1745
    Kostek MC, Chen YW, Cuthbertson DJ, Shi R, Fedele MJ, Esser KA, Rennie MJ (2007) Gene expression responses over 24 h to lengthening and shortening contractions in human muscle: major changes in CSRP3, MUSTN1, SIX1, and FBXO32. Physiol Genomics 31:42–52
    Kubica N, Kimball SR, Jefferson LS, Farrell PA (2004) Alterations in the expression of mRNAs and proteins that code for species relevant to eIF2B activity after an acute bout of resistance exercise. J Appl Physiol 96:679–687
    Larsen AE, Tunstall RJ, Carey KA, Nicholas G, Kambadur R, Crowe TC, Cameron-Smith D (2006) Actions of short-term fasting on human skeletal muscle myogenic and atrogenic gene expression. Ann Nutr Metab 50:476–481
    Léger B, Cartoni R, Praz M, Lamon S, Dériaz O, Crettenand A, Gobelet C, Rohmer P, Konzelmann M, Luthi F, Russell AP (2006) Akt signalling through GSK-3beta, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol 576:923–933
    Legerlotz K, Schjerling P, Langberg H, Brüggemann G-P, Niehoff A (2007) The effect of running, strength, and vibration strength training on the mechanical, morphological, and biochemical properties of the Achilles tendon in rats. J Appl Physiol 102:564–572
    Louis E, Raue U, Yang Y, Jemiolo B, Trappe S (2007) Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. J Appl Physiol 103:1744–1751
    Mahoney DJ, Parise G, Melov S, Safdar A, Tarnopolsky MA (2005) Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J 19:1498–1500
    Marino JS, Tausch BJ, Dearth CL, Manacci MV, McLoughlin TJ, Rakyta SJ, Linsenmayer MP, Pizza FX (2008) Beta2-integrins contribute to skeletal muscle hypertrophy in mice. Am J Physiol 295:C1026–C1036
    Mascher H, Tannerstedt J, Brink-Elfegoun T, Ekblom B, Gustafsson T, Blomstrand E (2007) Repeated resistance exercise training induces different changes in mRNA expression of MAFbx and MuRF-1 in human skeletal muscle. Am J Physiol Endocrinol Metab 294:E43–E51
    McElhinny AS, Kakinuma K, Sorimachi H, Labeit S, Gregorio CC (2002) Muscle-specific RING finger-1 interacts with titin to regulate sarcomeric M-line and thick filament structure and may have nuclear functions via its interaction with glucocorticoid modulatory element binding protein-1. J Cell Biol 157:125–136
    Mrosek M, Labeit D, Witt S, Heerklotz H, Von Castelmur E, Labeit S, Mayans O (2007) Molecular determinants for the recruitment of the ubiquitin-ligase MuRF-1 onto M-line titin. FASEB J 21:1383–1392
    Nedergaard A, Vissing K, Overgaard K, Kjaer M, Schjerling P (2007) Expression patterns of atrogenic and ubiquitin proteasome component genes with exercise: effect of different loading patterns and repeated exercise bouts. J Appl Physiol 103:1513–1522
    Norenberg KM, Fitts RH (2004) Contractile responses of the rat gastrocnemius and soleus muscles to isotonic resistance exercise. J Appl Physiol 97:2322–2332
    Phillips SM, Tipton KD, Ferrando AA, Wolfe RR (1999) Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am J Physiol 276:E118–E124
    Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3:1009–1013
    Sellman JE, DeRuisseau KC, Betters JL, Lira VA, Soltow QA, Selsby JT, Criswell DS (2006) In vivo inhibition of nitric oxide synthase impairs upregulation of contractile protein mRNA in overloaded plantaris muscle. J Appl Physiol 100:258–265
    Spencer JA, Eliazer S, Ilaria RL Jr, Richardson JA, Olson EN (2000) Regulation of microtubule dynamics and myogenic differentiation by MURF, a striated muscle RING-finger protein. J Cell Biol 150:771–784
    Stevenson EJ, Giresi PG, Koncarevic A, Kandarian SC (2003) Global analysis of gene expression patterns during disuse atrophy in rat skeletal muscle. J Physiol 551:33–48
    Tamaki T, Uchiyama S, Nakano S (1992) A weight-lifting exercise model for inducing hypertrophy in the hindlimb muscles of rats. Med Sci Sports Exerc 24:881–886
    Vyas DR, Spangenburg EE, Abraha TW, Childs TE, Booth FW (2002) GSK-3beta negatively regulates skeletal myotube hypertrophy. Am J Physiol Cell Physiol 283:C545–C551
    Wirth O, Gregory EW, Cutlip RG, Miller GR (2003) Control and quantitation of voluntary weight-lifting performance of rats. J Appl Physiol 95:402–412
    Wong TS, Booth FW (1988) Skeletal muscle enlargement with weight-lifting exercise by rats. J Appl Physiol 65:950–954
    Yang Y, Creer A, Jemiolo B, Trappe S (2005) Time course of myogenic and metabolic gene expression in response to acute exercise in human skeletal muscle. J Appl Physiol 98:1745–1752
    Yang Y, Jemiolo B, Trappe S (2006) Proteolytic mRNA expression in response to acute resistance exercise in human single skeletal muscle fibers. J Appl Physiol 101:1442–1450
    Zanchi NE, Lancha-Jr AH (2008) Mechanical stimuli of skeletal muscle: implications on mTOR/p70S6K and protein synthesis. Eur J Appl Physiol 102:253–263
    Zanchi NE, Lira FS, Seelaender M, Lancha-Jr AH (2009) Experimental chronic low-frequency resistance training produces skeletal muscle hypertrophy in the absence of muscle damage and metabolic stress markers. J Strength Cond Res (in press)