Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

The Tnt1 family member Retrosol copy number and structure disclose retrotransposon diversification in different Solanum species (2009)

  • Authors:
  • USP affiliated authors: ROSSI, MARIA MAGDALENA - IB ; SLUYS, MARIE ANNE VAN - IB
  • USP Schools: IB; IB
  • DOI: 10.1007/s00438-008-0408-4
  • Subjects: SOLANACEAE; RNA MENSAGEIRO
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/s00438-008-0408-4 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Molecular Genetics and Genomics

    ISSN: 1617-4615

    Citescore - 2017: 2.76

    SJR - 2017: 1.168

    SNIP - 2017: 0.813


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MANETTI, M.E.; GRANDBASTIEN, Marie-Angele; VAN SLUYS, Marie-Anne; ROSSI, Maria Magdalena; NAKABASHI, Myna. The Tnt1 family member Retrosol copy number and structure disclose retrotransposon diversification in different Solanum species. Molecular Genetics and Genomics, Heidelberg, v. 281, n. 3, p. 261-271, 2009. DOI: 10.1007/s00438-008-0408-4.
    • APA

      Manetti, M. E., Grandbastien, M. -A., Van Sluys, M. -A., Rossi, M. M., & Nakabashi, M. (2009). The Tnt1 family member Retrosol copy number and structure disclose retrotransposon diversification in different Solanum species. Molecular Genetics and Genomics, 281( 3), 261-271. doi:10.1007/s00438-008-0408-4
    • NLM

      Manetti ME, Grandbastien M-A, Van Sluys M-A, Rossi MM, Nakabashi M. The Tnt1 family member Retrosol copy number and structure disclose retrotransposon diversification in different Solanum species. Molecular Genetics and Genomics. 2009 ; 281( 3): 261-271.
    • Vancouver

      Manetti ME, Grandbastien M-A, Van Sluys M-A, Rossi MM, Nakabashi M. The Tnt1 family member Retrosol copy number and structure disclose retrotransposon diversification in different Solanum species. Molecular Genetics and Genomics. 2009 ; 281( 3): 261-271.

    Referências citadas na obra
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410
    Ammiraju JSS, Zuccolo A, Yu Y, Song X, Piegu B, Chevalier F, Waling JG, Ma J, Talag J, Brar DS, San Miguel PJ, Jiang N, Jackson SA, Panaud O, Wing RA (2007) Evolutionary dynamics of an ancient retrotransposon family provides insigths into evolution of the genome size in the genus Oryza. Plant J 52:342–351
    Araujo PG, Casacuberta JM, Costa AP, Hashimoto RY, Grandbastien MA, Van Sluys M-A (2001) Retrolyc subfamilies defined different U3 LTR regulatory regions in the Lycopersicon genus. Mol Genet Genomics 266(1):35–41
    Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16(7):1667–1678
    Bennetzen JL (2002) Mechanism and rates of genome expansion and contraction in flowering plants. Genetica 5(1):29–36
    Costa AP, Scortecci KC, Hashimoto RY, Araujo PG, Grandbastien MA, Van Sluys MA (1999) Retrolyc1-1, a member of a Tnt1 retrotransposon super-family in the Lyopersicon peruvianum genome. Genetica 107(1–3):65–72
    Cristofari G, Ficheux D, Darlix JL (2000) The GAG-like protein of the yeast Ty1 retrotransposon contains a nucleic acid chaperone domain analogous to retroviral nucleocapsid proteins. J Biol Chem 275:19210–19217
    deSá MM, Drouin G (1996) Phylogeny and substitution rates of angiosperm actin genes. Mol Biol Evol 13:1198–1212
    Devos KM, Brown JK, Bennetzen JL (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115(1):29–36
    Ewing B, Hillier L, Wedl M, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185
    Gordon DP, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202
    Gordon D, Desmarais C, Green P (2001) Automated finishing with autofinish. Genome Res 11:614–625. doi: 10.1101/gr.171401
    Grandbastien MA, Spielmann A, Caboche M (1989) Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337:376–380
    Grandbastien MA, Audeon C, Bonnivard E, Casacuberta JM, Chalhoub B, Costa AP, Melayah D, Petit M, Poncet C, Tam SM, Van Sluys MA, Mhiri C (2005) Stress activation and genomic impact of Tnt1 retrotransposon in Solanaceae. Cytogenet Genome Res 110(1–4):229–241
    Hedges DJ, Batzer MA (2005) From the margins of the genome: mobile elements shape primate evolution. Bioessays 8:785–794
    Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1988) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Gene 73:237–244. doi: 10.1016/0378-1119(88)90330-7
    IHGSC (2006) DNA sequence and analysis of human chromosome 8. Nature 439(7074):331–335
    Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163
    Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101(34):12404–12410
    Magallon SA, Sanderson MJ (2005) Angiosperm divergence times: the effect of genes, codon position and time constraints. Evolution 59:1653–1670
    Malik HS, Eickbush TH (2001) Phylogenetic analysis of ribonuclease H domains suggest a late, chimeric origin of LTR retrotransposable elements and retroviruses. Genome Res 11:1187–1197
    Manetti ME, Rossi M, Costa AP, Clausen AM, Van Sluys MA (2007) Radiation of Tnt1 retrotransposon superfamily in three Solanaceae genera. BMC Evol Biol 7:34. doi: 10.1186/1471-2148-7-34
    McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801
    Melayah D, Lim KY, Bonnivard E, Chalhoub B, de Borne Dorlhac F, Mhiri C, Leitch AR, Grandbastien MA (2004) Distribution of the Tnt1 retrotransposon family in the amphidiploid tobacco (Nicotiana tabacum) and its wild Nicotiana relatives. Biol J Linn Soc 82(4):639–649
    Pennisi E (2007) Jumping genes into the evolutionary limelight. Science 317(5840):894–895
    Plant DNA C-values Database (2005) Royal Botanic Gardens, Kew. http://data.kew.org/cvalues/homepage.html . Release 4.0 October 2005
    San Miguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20(1):43–45
    Soleimani VD, Baum BR, Johnson DA (2006) Quantification of the retrotransposon BARE-1 reveals the dynamic nature of the barley genome. Genome 49(4):389–396
    Vernhettes S, Grandbastien MA, Casacuberta JM (1998) The evolutionary analysis of the Tnt1 retrotransposon in Nicotiana species reveals the high variability of its regulatory sequence. Mol Biol Evol 7:827–836
    Vitte C, Bennetzen JL (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Natl Acad Sci USA 103(47):17638–17643
    Vitte C, Panaud O, Quesneville H (2007) LTR retrotransposons in rice (Oryza sativa, L.): recent burst amplifications followed by rapid DNA loss. BMC Genomics 8:218
    Wilhelm M, Wilhelm FX (2001) Reverse transcription of retroviruses and LTR retrotransposons. Cell Mol Life Sci 58:1246–1262 Review
    Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperm calibrating the family tree. Proc Biol Sci 268(1482):2211–2220
    Wright S, Finnegan D (2001) Genome evolution: sex and transposable elements. Curr Biol 11(8):R296–R299
    Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:3353–3362
    Yañes M, Verdugo I, Rodriguez M, Prat S, Ruiz-Lara S (1998) Highly heterogeneous families of Ty1/copia retrotransposons in the Lycopersicon chilense genome. Gene 222(2):223–228