Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Formulating mixed models for experiments, including longitudinal experiments (2009)

  • Authors:
  • USP affiliated authors: DEMETRIO, CLARICE GARCIA BORGES - ESALQ
  • USP Schools: ESALQ
  • DOI: 10.1198/jabes.2009.08001
  • Subjects: ANÁLISE DE VARIÂNCIA; MODELOS (ANÁLISE MULTIVARIADA); EXPERIMENTOS CIENTÍFICOS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1198/jabes.2009.08001 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      BRIEN, C. J.; DEMÉTRIO, Clarice Garcia Borges. Formulating mixed models for experiments, including longitudinal experiments. The journal of Agricultural, Biological, and Environmental Statistics, Alexandria, v. 14, n. 3, p. 253-280, 2009. Disponível em: < http://link.springer.com/article/10.1198%2Fjabes.2009.08001 > DOI: 10.1198/jabes.2009.08001.
    • APA

      Brien, C. J., & Demétrio, C. G. B. (2009). Formulating mixed models for experiments, including longitudinal experiments. The journal of Agricultural, Biological, and Environmental Statistics, 14( 3), 253-280. doi:10.1198/jabes.2009.08001
    • NLM

      Brien CJ, Demétrio CGB. Formulating mixed models for experiments, including longitudinal experiments [Internet]. The journal of Agricultural, Biological, and Environmental Statistics. 2009 ; 14( 3): 253-280.Available from: http://link.springer.com/article/10.1198%2Fjabes.2009.08001
    • Vancouver

      Brien CJ, Demétrio CGB. Formulating mixed models for experiments, including longitudinal experiments [Internet]. The journal of Agricultural, Biological, and Environmental Statistics. 2009 ; 14( 3): 253-280.Available from: http://link.springer.com/article/10.1198%2Fjabes.2009.08001

    Referências citadas na obra
    Bailey, R. A. (1981), “A Unified Approach to Design of Experiments,” Journal of the Royal Statistical Society, Ser. A, 144, 214–223.
    Brien, C. J. (1983), “Analysis of Variance Tables Based on Experimental Structure,” Biometrics, 39, 51–59.
    Brien, C. J., and Bailey, R. A. (2006), “Multiple Randomizations” (with discussion), Journal of the Royal Statistical Society, Ser. B, 68, 571–609.
    Brien, C. J. (2009), “Decomposition Tables for Multitiered Experiments I. A Chain of Randomizations,” The Annals of Statistics, to appear.
    Brien, C. J., and Demétrio, C. G. B. (1998), “Using the Randomisation in Specifying the ANOVA Model and Table for Properly and Improperly Replicated Grazing Trials,” Australian Journal of Experimental Agriculture, 38, 325–334.
    Brien, C. J., and Payne, R. W. (2006), “AMTIER Procedure,” in GenStat Reference Manual Release 9, Part 3. Procedure Library PL 17, eds. R. W. Payne and P. W. Lane, Hemel Hempstead, U.K.: VSN International, pp. 73–75.
    Butler, D., Cullis, B. R., Gilmour, A. R., and Gogel, B. J. (2007), Analysis of Mixed Models for S Language Environments: ASReml-R Reference Manual, Brisbane, Australia: DPI Publications.
    Fisher, R. A. (1935), Contribution to the discussion of “Complex Experiments,” by F. Yates, Journal of the Royal Statistical Society (Suppl. 2), 229–231. Incomplete extract at http:// hdl.handle.net/2440/15225 (accessed June 21, 2008).
    Hurlbert, S. H. (1984), “Pseudoreplication and the Design of Ecological Field Experiments,” Ecological Monographs, 54, 187–211.
    Laird, N. M., and Ware, J. H. (1982), “Random-Effects Models for Longitudinal Data,” Biometrics, 38, 963–974.
    Littel, R., Milliken, G., Stroup, W., Wolfinger, R., and Schabenberger, O. (2006), SAS for Mixed Models (2nd ed.), Cary, NC: SAS Press.
    Lorenzen, T., and Anderson, V. L. (1993), Design of Experiments: A No-Name Approach, New York: Dekker.
    Nelder, J. A. (1965a), “The Analysis of Randomized Experiments With Orthogonal Block Structure. I. Block Structure and the Null Analysis of Variance,” Proceedings of the Royal Society, Ser. A, 283, 147–161.
    — (1965b), “The Analysis of Randomized Experiments With Orthogonal Block Structure. II. Treatment Structure and the General Analysis of Variance,” Proceedings of the Royal Society, Ser. A, 283, 162–178.
    Patterson, H. D. (1997), “Analyses of Series of Variety Trials,” in Statistical Methods for Plant Variety Evaluation, eds. R. A. Kempton and P. N. Fox, London: Chapman & Hall, pp. 139–161.
    Payne, R. W., Harding, S. A., Murray, D. A., Soutar, D. M., Baird, D. B., Glaser, A. I., Channing, I. C., Welham, S. J., Gilmour, A. R., Thompson, R., and Webster, R. (2008), The Guide to GenStat Release 11, Part 2. Statistics. Hemel Hempstead, U.K.: VSN International. Available at http://www.genstat.co.uk/ resources/ documentation/genstat-guide-statistics/ (accessed June 21, 2008).
    Pereira, R. A. G. (1969), “Estudo Comparativo das Propriedades Físico-Mecânicas da Celulose Sulfato de Madeira de Eucalyptus saligna Smith, Eucalyptus alba Reinw e Eucalyptus grandis Hill ex Maiden,” Ph.D. thesis, Escola Superior de Agricultura ‘Luiz de Queiroz,’ University of São Paulo, Piracicaba, Brasil.
    Piepho, H. P. (2006), Contribution to the discussion of “Multiple Randomizations,” by C. J. Brien and R. A. Bailey, Journal of the Royal Statistical Society, Ser. B, 68, 605.
    Piepho, H. P., Büchse, A., and Emrich, K. (2003), “A Hitchhiker’S Guide to Mixed Models for Randomized Experiments,” Journal of Agronomy and Crop Science, 189, 310–322.
    Piepho, H. P., Büchse, A., and Richter, C. (2004), “A Mixed Modelling Approach for Randomized Experiments With Repeated Measures,” Journal of Agronomy and Crop Science, 190, 230–247.
    Pinheiro, J. C., and Bates, D. (2000), Mixed Effects Models in S and S-PLUS, New York: Springer.
    R Core Development Team (2008), R: A Language and Environment for Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing. Available at http://www.r-project.org.
    Robinson, G. K. (1991), “That BLUP Is a Good Thing: The Estimation of Random Effects,” Statistical Science, 6, 15–51.
    S-PLUS 7.0 for Windows (2005), Insightful Corporation, Seattle, WA.
    Samuels, M. L., Casella, G., and McCabe, G. P. (1991), “Interpreting Blocks and Random Factors,” Journal of the American Statistical Association, 86, 798–821.
    Self, S. G., and Liang, K.-Y. (1987), “Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio Tests Under Nonstandard Conditions,” Journal of the American Statistical Association, 82, 605–610.
    Verbeke, G., and Molenberghs, G. (2000), Linear Mixed Models for Longitudinal Data, Berlin: Springer-Verlag.
    Verbyla, A. P., Cullis, B. R., Kenward, M. G., and Welham, S. J. (1999), “The Analysis of Designed Experiments and Longitudinal Data by Using Smoothing Splines” (with discussion), Applied Statistics, 48, 269–311.
    White, R. F. (1975), “Randomization and the Analysis of Variance,” Biometrics, 31, 552–572.
    Wilk, M. B., and Kempthorne, O. (1956), “Some Aspects of the Analysis of Factorial Experiments in a Completely Randomized Design,” Annals of Mathematical Statistics, 27, 950–985.
    Wolfinger, R. D. (1993), “Covariance Structure Selection in General Mixed Models,” Communications in Statistics, Simulation and Computation, 22, 1079–1106.
    Yates, F. (1954), “The Analysis of Experiments Containing Different Crop Rotations,” Biometrics, 10, 324–346.