Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Abscisic acid and auxin accumulation in Catasetum fimbriatum roots growing in vitro with sucrose and mannitol content (2009)

  • Authors:
  • USP affiliated authors: PERES, LAZARO EUSTAQUIO PEREIRA - ESALQ ; KERBAUY, GILBERTO BARBANTE - IB
  • USP Schools: ESALQ; IB
  • DOI: 10.1007/s10535-009-0101-4
  • Subjects: PROPAGAÇÃO VEGETAL (TÉCNICAS IN VITRO); REGULADORES DE CRESCIMENTO VEGETAL; HORMÔNIOS VEGETAIS; ORQUÍDEA
  • Language: Inglês
  • Imprenta:
  • Source:
    • Título do periódico: Biologia Plantarum
    • Volume/Número/Paginação/Ano: v. 53, n. 3, p. 560-564, 2009
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10535-009-0101-4 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Biologia Plantarum

    ISSN: 0006-3134

    Citescore - 2017: 1.65

    SJR - 2017: 0.594

    SNIP - 2017: 0.64


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      PERES, Lázaro Eustáquio Pereira; ZSÖGÖN, A.; KERBAUY, Gilberto Barbante. Abscisic acid and auxin accumulation in Catasetum fimbriatum roots growing in vitro with sucrose and mannitol content. Biologia Plantarum, Praha, v. 53, n. 3, p. 560-564, 2009. Disponível em: < http://link.springer.com/article/10.1007%2Fs10535-009-0101-4 > DOI: 10.1007/s10535-009-0101-4.
    • APA

      Peres, L. E. P., Zsögön, A., & Kerbauy, G. B. (2009). Abscisic acid and auxin accumulation in Catasetum fimbriatum roots growing in vitro with sucrose and mannitol content. Biologia Plantarum, 53( 3), 560-564. doi:10.1007/s10535-009-0101-4
    • NLM

      Peres LEP, Zsögön A, Kerbauy GB. Abscisic acid and auxin accumulation in Catasetum fimbriatum roots growing in vitro with sucrose and mannitol content [Internet]. Biologia Plantarum. 2009 ; 53( 3): 560-564.Available from: http://link.springer.com/article/10.1007%2Fs10535-009-0101-4
    • Vancouver

      Peres LEP, Zsögön A, Kerbauy GB. Abscisic acid and auxin accumulation in Catasetum fimbriatum roots growing in vitro with sucrose and mannitol content [Internet]. Biologia Plantarum. 2009 ; 53( 3): 560-564.Available from: http://link.springer.com/article/10.1007%2Fs10535-009-0101-4

    Referências citadas na obra
    Belefant, H., Fong, F.: Abscisic acid ELISA: organic acid interference. — Plant Physiol. 91: 1467–1470, 1989.
    Benzing, D.H.: Aerial roots and their environments. — In: Waiser, Y., Eshe, A., Kafkafi, U. (ed.): Plant Roots: the Hidden Half. Pp. 875–894. Marcel Dekker, New York 1996.
    Brady, S.M., Sarkar, S.F., Bonetta, D., McCourt, P.: The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. — Plant J. 34: 67–75, 2003.
    Colli, S., Kerbauy, G.B.: Direct root tip conversion of Catasetum into protocorm-like bodies. Effects of auxin and cytokinin. — Plant Cell Tissue Organ Cult 33: 39–44, 1993.
    Feldman, L.: Auxin biosynthesis and metabolism in isolated roots of Zea mays. — Physiol. Plant. 49: 145–150, 1980.
    Gonçalves, S., Romano, A.: In vitro minimum growth for conservation of Drosophyllum lusitanicum. — Biol. Plant. 51:795–798, 2007.
    Grossmann, K., Scheltrup, F., Kwiatkowski, J., Gaspar, G.: Induction of abscisic acid is a common effect of auxin herbicides in susceptible plants. — J. Plant Physiol. 149: 475–478, 1996.
    Kerbauy, G.B.: The effects of sucrose and agar on the formation of protocorm-like bodies in recalcitrant root tip meristems of Oncidium varicosum Lindl. — Lindleyana 8: 149–154, 1993.
    Ljung, K., Hull, A.K., Celenza, J., Yamada, M., Estelle, M., Normanly, J., Sandberg, G.: Sites and regulation of auxin biosynthesis in Arabidopsis roots. — Plant Cell 17: 1090–1104, 2005.
    Madhulatha, P., Kirubakaran, S.I., Sakthivel, N.: Effects of carbon sources and auxins on in vitro propagation of banana. — Biol. Plant. 50: 782–784, 2006.
    Maldiney, R., Leroux, B., Sabbaghi, I., Sotta, B., Sossountzov, L., Miginiac, E.: A biotin-avidin-based enzyme immunoassay to quantify three phytohormones: auxin, abscisic acid, and zeatin riboside. — J. Immunol. Methods 90: 151–158, 1986.
    Mingozzi, M., Morini, S.: In vitro cultivation of donor quince shoots affects subsequent morphogenesis in leaf explants. — Biol. Plant. 53: 141–144, 2009.
    Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.
    Normanly, J., Slovin, J.P., Cohen, J.D.: Rethinking auxin biosynthesis and metabolism. — Plant Physiol. 107: 323–329, 1995.
    Patel, D., Thaker, V.S.: Estimation of endogenous contents of phytohormones during internode development in Merremia emarginata. — Biol. Plant. 51: 75–79, 2007.
    Peres, L.E.P., Amar, S., Kerbauy, G.B., Salatino, A., Zaffari, G.R., Mercier, H.: Effects of auxin, cytokinin and ethylene treatments on the endogenous ethylene and auxin-tocytokinin ratio related to direct root tip conversion of Catasetum fimbriatum Lindl. (Orchidaceae) into buds. — J. Plant Physiol. 155: 551–555, 1999.
    Peres, L.E.P., Kerbauy, G.B.: High cytokinin accumulation following root tip excision changes the endogenous auxin to cytokinin ratio during root-to-shoot conversion in Catasetum fimbriatum Lindl. (Orchidaceae). — Plant Cell Rep. 18: 1002–1006, 1999.
    Peres, L.E.P., Majerowicz, N., Kerbauy, G.B.: Dry matter partitioning differences between shoots and roots in two contrasting genotypes of orchids and their relationship with endogenous levels of auxins, cytokinins and abscisic acid. — Braz. J. Plant Physiol. 13: 185–195, 2001.
    Peres, L.E.P., Mercier, H., Kerbauy, G.B., Zaffari, G.R.: [Endogenous levels of IAA, cytokinins and ABA in a shootless orchid and a rootless bromeliad determined by means of HPLC and ELISA.] — Braz. J. Plant Physiol. 9: 169–176, 1997. [In Portuguese]
    Pilet, P.E., Elliott, M.C., Moloney, M.M.: Endogenous and exogenous auxin in the control of root growth. — Planta 146: 405–408, 1979.
    Pilet, P.E., Saugy, M.: Effect of root growth of endogenous and applied AIA and ABA. A critical reexamination. — Plant Physiol. 83: 33–38, 1987.
    Pritchard, J.: The control of cell expansion in roots. — New Phytol. 127: 3–26, 1994.
    Ribaut, J.M., Pilet, P.E.: Effect of water stress on growth osmotic potential and abscisic acid content of maize roots. — Physiol. Plant. 81: 156–162, 1991.
    Ribaut, J.M., Pilet, P.E.: Water stress and indol-3yl-acetic acid content of maize roots. — Planta 193: 502–507, 1994.
    Ribaut, J.M., Schaerer, S., Pilet, P.E.: Deuterium-labeled indole-3-acetic acid neo-synthesis in plantlets and excised roots of maize. — Planta 189: 80–82, 1993.
    Saab, I.N., Sharp, Q.E., Pritchard, J., Voetberg, G.S.: Increased endogenous abscisic acid maintains primary root growth and inhibits shoot growth of maize seedlings of low water potentials. — Plant Physiol. 93: 1329–1336, 1990.
    Sanford, W.W.: The ecology of orchids. — In: Withner, C.L. (ed.): The Orchids: Scientific Studies. Pp. 1–100. John Wiley & Sons, New York 1974.
    Sharp, R.E., Wu, Y., Voetberg, G.S., Saab, I.N., LeNoble, M.E.: Confirmation that abscisic acid accumulation is required for maize primary root elongation at low water potentials. — J. exp. Bot. 45: 1743–1751, 1994.
    Spollen, W.G., LeNoble, M.E., Samuels, T.D., Bernstein, N., Sharp, R.E.: Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. — Plant Physiol. 122: 967–976, 2000.
    Stoop, J.M.H., Williamson, J.D., Pharr, D.M.: Mannitol metabolism in plants: a method for coping with stress. — Trends Plant Sci. 1: 139–144, 1996.
    Suzuki, M., Dao, C.-Y., Cocciolone, S., McCarty, D.R.: Maize VP1 complements Arabidopsis abi3 and confers a novel ABA/auxin interaction in roots. — Plant J. 28: 409–418, 2001.
    Vacin, E.F., Went, F.W.: Some pH changes in nutrient solutions. — Bot. Gaz. 110: 605–617, 1949.
    Verslues, P.E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., Zhu, J.-K.: Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. — Plant J. 45: 523–539, 2006.
    Vinterhalter, B., NinkoviĆ, S., Cingel, A., Vinterhalter, D.: Shoot and root culture of Hypericum perforatum L. transformed with Agrobacterium rhizogenes A4M70GUS. — Biol. Plant. 50: 767–770, 2006.
    Walton, D.C., Harrison, M.A., Cotê, P.: The effects of water stress on abscisic-acid levels and metabolism in roots of Phaseolus vulgaris L. and other plants. — Planta 131: 141–144, 1976.
    Wotavová-Novotná, K., Vejsadová, H., Kindlmann, P.: Effects of sugars and growth regulators on in vitro growth of Dactylorhiza species. — Biol. Plant. 51: 198–200, 2007.
    Xin, Z.-Y., Zhou, Z., Pilet, P.E.: Level changes of jasmonic, abiscisic, and indole-3yl-acetic acids in maize under desiccation stress. — J. Plant Physiol. 151: 120–124, 1997.
    Zaffari, G.R., Peres, L.E.P., Kerbauy, G.B.: Endogenous levels of cytokinins, IAA, ABA and pigments in variegated somaclones of micropropagated banana leaves. — J. Plant Growth Regul. 17: 59–61, 1998.
    Zaffari, G.R., Peres, L.E.P., Tcacenco, F.A., Kerbauy, G.B.: Indole-3-acetic acid metabolism in normal and dwarf micropropagated banana plants (Musa spp. AAA). — Braz. J. of Plant Physiol. 14: 211–217, 2002.
    Zhang, J., Davies, W.J.: Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil. — Plant Cell Environ. 12: 73–81, 1989.