Ver registro no DEDALUS
Exportar registro bibliográfico



Lavas and their mantle xenoliths from intracratonic Eastern Paraguay (South America Platform) and Andean Domain, NW-Argentina: a comparative review (2010)

  • Authors:
  • USP Schools: IGC; IGC
  • DOI: 10.1007/s00710-009-0061-6
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00710-009-0061-6 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Mineralogy and Petrology

    ISSN: 0930-0708

    Citescore - 2017: 1.57

    SJR - 2017: 0.833

    SNIP - 2017: 0.788

  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      COMIN-CHIARAMONTI, P; LUCASSEN, F.; GIRARDI, Vicente Antonio Vitorio; DE MIN, A.; GOMES, Celso B. Lavas and their mantle xenoliths from intracratonic Eastern Paraguay (South America Platform) and Andean Domain, NW-Argentina: a comparative review. Mineralogy and Petrology, New York, v. 98, n. 1-4, p. 143-165, 2010. Disponível em: < > DOI: 10.1007/s00710-009-0061-6.
    • APA

      Comin-Chiaramonti, P., LUCASSEN, F., Girardi, V. A. V., De Min, A., & Gomes, C. B. (2010). Lavas and their mantle xenoliths from intracratonic Eastern Paraguay (South America Platform) and Andean Domain, NW-Argentina: a comparative review. Mineralogy and Petrology, 98( 1-4), 143-165. doi:10.1007/s00710-009-0061-6
    • NLM

      Comin-Chiaramonti P, LUCASSEN F, Girardi VAV, De Min A, Gomes CB. Lavas and their mantle xenoliths from intracratonic Eastern Paraguay (South America Platform) and Andean Domain, NW-Argentina: a comparative review [Internet]. Mineralogy and Petrology. 2010 ; 98( 1-4): 143-165.Available from:
    • Vancouver

      Comin-Chiaramonti P, LUCASSEN F, Girardi VAV, De Min A, Gomes CB. Lavas and their mantle xenoliths from intracratonic Eastern Paraguay (South America Platform) and Andean Domain, NW-Argentina: a comparative review [Internet]. Mineralogy and Petrology. 2010 ; 98( 1-4): 143-165.Available from:

    Referências citadas na obra
    Barbieri MA, Rivalenti G, Cingolani C, Mazzucchelli M, Zanetti A (1997) Geochemical and isotope variability of the northern and southern Patagonia lithospheric mantle (Argentina). Proceedings of South America Symposiumon Isotope Geology, Campos do Jordão, São Paulo, Brazil, Extended Abstract: 41–43
    Bonatti E, Michael J (1989) Mantle peridotites from continental rifts to ocean basins to subduction zones. Earth Plan Sci Lett 91:297–311
    Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare Earth Element geochemistry. Elsevier, Amsterdam, pp 63–114
    Brey GP, Köhler T, Nickel KG (1990) Geothermobarometry in four-phase Lherzolites I. Experimental results from 10 to 60 kb. J Petrol 31:1313–1352
    Bristow JF (1984) Nephelinites of the North Lebombo and South East Zimbawe. Spec Publ Geol Soc South Africa 13:87–104
    Chaffey DJ, Cliff RA, Wilson BM (1989) Characterization of the St Helena magma source. In: Sunders D & Norry MS (eds) Magmatism in the Ocean basin. Geol. Society, Special Paper 42: 257–276.
    Chiba H, Chack T, Clayton RN, Goldsmith J (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite, and calcite: Application to geothermometry. Geochim Cosmochim Acta 53:2985–2995
    Comin-Chiaramonti P, Gomes CB (1996) Alkaline Magmatism in Central-Eastern Paraguay. Relationships with coeval magmatism in Brazil. Edusp/Fapesp, São Paulo, Brazil, p 464
    Comin-Chiaramonti P, Gomes CB (2005) Mesozoic to Cenozoic alkaline magmatism in the Brazilian Platform. Edusp/Fapesp, São Paulo, Brazil, p 752
    Comin-Chiaramonti P, Demarchi G, Girardi VAV, Princivalle F, Sinigoi S (1986) Evidence of mantle metasomatism and heterogeneity from peridotite inclusions of northeastern Brazil and Paraguay. Earth Plan Sci Lett 77:203–217
    Comin-Chiaramonti P, Civetta L, Petrini R, Piccirillo EM, Bellieni G, Censi P, Bitschene P, DeMarchi G, De Min A, Gomes CB, Castillo AMC, Velázquez JC (1991) Cenozoic nephelinitic magmatism in Eastern Paraguay: petrology, Sr-Nd isotopes and genetic relationships with associated spinel-peridotite xenoliths. Europ J Mineral 3:507–525
    Comin-Chiaramonti P, Cundari A, Piccirillo EM, Gomes CB, Castorina F, Censi P, De Min A, Marzoli A, Speziale S, Velázquez VF (1997) Potassic and sodic igneous rocks from Eastern Paraguay: their origin from the lithospheric mantle and genetic relationships with the associated Paraná flood tholeiites. J Petrol 38:495–528
    Comin-Chiaramonti P, Princivalle F, Girardi VAA, Gomes CB, Laurora A, Zanetti F (2001) Mantle xenoliths from Ñemby, Eastern Paraguay: O-Sr-Nd isotopes, trace elements and crystal chemistry of hosted clinopyroxenes. Periodico di Mineralogia 70:205–230
    Comin-Chiaramonti P, Marzoli A, Gomes CB et al (2007) Origin of Post-Paleozoic magmatism in Eastern Paraguay. In: RG Foulger and DM Jurdy (eds) The origin of melting anomalies. Geological Society of America, Special Paper 430, pp. 603–633
    Dalla Salda LH, Francese JR, Posadas VG (1992) The 1800 Ma mylonite-anatectic granitoid association in Tandilia, Argentina. Basement Tec 7:161–174
    De La Roche H (1986) Classification et nomenclature des roches ignées: un essai de restauration de la convergence entre systématique quantitative, typologie de l’usage et modélisation génétique. Bull Soc Géol de France 8:337–353
    De Marchi G, Comin-Chiaramonti P, De Vito P, Sinigoi S, Castillo AMC (1988) Lherzolite-dunite xenoliths from Eastern Paraguay: petrological constraints to mantle metasomatism. In: Piccirillo EM, Melfi AJ (eds) The Mesozoic Flood Volcanism from the Paraná Basin (Brazil). Petrogenetic and geophysical aspects. Iag-Usp, São Paulo, Brazil, pp 207–227
    Erlank AJ, Waters FG, Hawkesworth CJ et al (1987) Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa. In: Menzies ML, Hawkesworth CJ (eds) Mantle metasomatism. Academic, London, pp 221–311
    Fabriès J (1979) Spinel-olivine geothermometry in peridotites from ultramafic complexes. Contrib Mineral Petrol 69:329–336
    Franz G, Lucassen F, Kramer W et al (2006) Crustal evolution at the Central Andean continental margin: a geochemical record of crustal growth, recycling and destruction. In: Oncken O, Chong G, Franz G et al (eds) The Andes: Active Subduction Orogeny. Frontiers in Earth Sciences, 1. Springer Verlag, Heidelberg, pp 45–64
    Frey FA, Green DH (1974) The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geoch Cosmochim Acta 38:1023–1050
    Fulfaro V (1996) Geology of Eastern Paraguay. In: Comin-Chiaramonti P, Gomes CB (eds) Alkali magmatism in Central Eastern Paraguay. Brazil, Edusp/Fapesp, pp 17–31
    Gibson SA, Thompson RN, Day JA (2006) Timescales and mechanism of plume-lithosphere interaction: 40Ar/39Ar geochronology and geochemistry of alkaline igneous rocks from the Paraná-Etendeka large igneous province. Earth Plan Sci Lett 251:1–17
    Girardi VAV (2006) Sr-Nd isotopic study of selected Paleo- and Mesoproterozoic mafic intrusions from cratonic areas of Brazil and Uruguay: inferences on their mantle sources. V South American Symposium on Isotope Geology- Uruguay, Short papers, pp. 378–381
    Gregoire M, Tinguely C, Bell DR, Le Roex AP (2005) Spinel lherzolite xenoliths from the Premier kimberlite (Kaapvaal craton, South Africa): nature and evolution of the shallow upper mantle beneath the Bushveld complex. Lithos 84:185–205
    Hart SR, Zindler A (1989) Constraints on the nature and the development of chemical heterogeneities in the mantle. In: Peltier WR (ed) Mantle convection plate tectonics and global dynamics. Gordon and Breach Sciences Publishers, New York, pp 261–388
    Hauri EH (1997) Melt migration and mantle chromatography, I: simplified theory and conditions for chemical and isotopic decoupling. Earth Plan Sci Lett 153:1–19
    Hirschmann M (2000) Mantle solidus: experimental constraints and the effects of peridotite composition. Geochem Geophys Geosyst 1(10):1042
    Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust and oceanic crust. Earth Plan Sci Lett 153:1–19
    Johnson KTM, Dick HJB, Shimizu N (1990) Melting in oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J Geophys Res 95:2661–2678
    Keller J, Hoefs J (1995) Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai. In: Bell K, Keller J (eds) Carbonatite volcanism: Oldoiynio Lengai and the petrogenesis of natrocarbonatites. Springer, Berlin, pp 113–123
    Kyser TK (1990) Stable isotopes in the continental lithospheric mantle. In: Menzies MA (ed) Continental mantle. Clarendon, Oxford, pp 127–156
    Kyser TK, O’Neil JR, Carmichael ISE (1981) Oxygen isotope thermometry of basic lavas and mantle nodules. Contrib Mineral Petrol 77:11–23
    Laurora A, Mazzucchelli M, Rivalenti G et al (2001) Metasomatism and melting in carbonated peridotite xenoliths from the mantle wedge: the Gobernador Gregore case (Southern Patagonia). J Petrol 42:69–87
    Leitch AM, Davis GF (2001) Mantle plumes and flood basalts: enhanced melting from plume ascent and an eclogite component. J Geophys Res 106:2047–2059
    Le Maitre RW (1989) A classification of igneous rocks and glossary of terms. Blackwell Scientific Publications, Oxford, p 193
    Lucassen F, Becchio R, Wilke HG et al (2000) Proterozoic– Paleozoic development of the basement of the Central Andes (18°-26°)–a mobile belt of the South American craton. J South Am Earth Sci 13:697–715
    Lucassen F, Escayola M, Franz G, Romer RL, Koch K (2002) Isotopic composition of late Mesozoic basic and ultrabasic rocks from Andes, 23–32º S)–implications for the Andean mantle. Contrib Mineral Petrol 143:336–349
    Lucassen F, Franz G, Viramonte J, Romer RL, Dulski P, Lang A (2005) The late Cretaceous lithospheric mantle beneath the Central Andes: evidence from phase equilibrium and composition of mantle xenoliths. Lithos 82:379–406
    Lucassen F, Franz G, Romer RL, Schultz F, Dulski P, Wemmer K (2007) Pre-Cenozoic intra-plate magmatism along the Central Andes (17–34°S): Composition of the mantle at an active margin. Lithos 99:312–338
    MacRae NE (1979) Silicate glass and sulfides in ultramafic xenoliths, Newer basalts, Victoria, Australia. Contrib Mineral Petrol 68:275–280
    McKenzie D, O’Nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32:1021–1091
    Menzies MA, Hawkesworth CJ (1987) Mantle Metasomatism. Academic, Geology Series, London, p 453
    Menzies MA, Kempton P, Dungan M (1985) Interaction of continental lithosphere and asthenospheric melts below the Geronimo volcanic field, Arizona. J Petrol 26:663–693
    Menzies MA, Rogers N, Tindle A, Hawkesworth CJ (1987) Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenosphere-lithosphere interaction. In: Menzies MA, Hawkesworth CJ (eds) Mantle Metasomatism. Academic, Geology Series, London, pp 313–364
    Mercier JC (1980) Single-pyroxene geothermometry and geobarometry. Am J Sci 61:603–615
    Mercier JC, Benoit V, Girardeau J (1984) Equilibrium state of diopside-bearing harzburgites from ophiolites: geobarometric and geodynamic implications. Contrib Mineral Petrol 85:391–403
    Moore AE, Blenkinsop TG, Cotterill F (2008) Controls on post-Gondwana alkaline volcanism in Southern Africa. Earth Planet Sci Lett 268:151–164
    Morimoto N (1989) Nomenclature of pyroxenes. Can Mineral 27:143–156
    Nielson JE, Noller JS (1987) Processes of mantle metasomatism; constraints from observations of composite mantle xenoliths. Geol Soc of America, S.P. 215:61–75
    Nimis P (1995) A clinopyroxene geobarometer for basaltic systems based on crystal-structure modelling. Contrib Mineral Petrol 121:115–125
    O’Reilly SY, Griffin WC (1988) Mantle metasomatism beneath western Victoria, Australia. 1: Metasomatic processes in Cr diopside lherzolites. Geochim Cosmochim Acta 52:433–448
    Oliveiros V, Morata D, Aguirre L, Féraud G, Fornari M (2007) Jurassic to Early Cretaceous subduction-related magmatism in the Coastal Cordillera of northern Chile (18°30’–24°S): geochemistry and petrogenesis. Rev Geol de Chile 34:209–232
    Omarini R, Sureda RJ, Gotze HJ, Seilacher A, Pfluger F (1999) Puncoviscana folded belt in northwestern Argentina: testimony of late Proterozoic Rodinia fragmentation and pre-Gondwana collisional episodes. Intern J Earth Sci 88:76–97
    Perkins G, Zachary S, Serverstone J (2006) Oxygen isotope evidence for subduction and rift-related mantle metasomatism beneath the Colorado Plateau-Rio Grande rift transition. Contrib Mineral Petrol 151:633–650
    Petrini R, Comin-Chiaramonti P, Vannucci R (1994) Evolution of the lithosphere beneath Eastern Paraguay: geochemical evidence from mantle xenoliths in the Asunción-Ñemby nephelinites. Mineral Petrographica Acta 37:247–259
    Piccirillo EM, Melfi AJ (1988) The Mesozoic Flood Volcanism from the Paraná Basin (Brazil). Petrogenetic and geophysical aspects. Iag-Usp, São Paulo, Brazil, p 600
    Princivalle F, Tirone M, Comin-Chiaramonti P (2000) Clinopyroxenes from metasomatized spinel-peridotite mantle xenoliths from Ñemby (Paraguay): crystal chemistry and petrological implications. Mineral Petrol 70:25–35
    Rampone E, Bottazzi P, Ottolini L (1991) Complementary Ti and Zr anomalies in orthopyroxene and clinopyroxene from mantle peridotites. Nature 354:518–521
    Ramos VA (2008) The basement of the central Andes: the Arequipa and related terranes. Ann Rev Earth Planet Sci 36:289–324
    Ramos VA, Aleman A (2000) Tectonic evolution of Andes. In: Cordani UG, Milani EJ, Thomas Filho A, Campos DA (Eds) Tectonic evolution of South America. 31° International Geological Congress, Rio de Janeiro, pp 635–688
    Rapela CW, Pankhurst RJ, Casquet C et al (2007) The Río de la Plata craton and the assembly of SW Gondwana. Earth-Sci Rev 83:49–82
    Rivalenti G, Vannucci R, Rampone E et al (1996) Peridotite clinopyroxene chemistry reflects mantle processes rather than continental versus oceanic settings. Earth Plan Sci Lett 139:423–437
    Rivalenti G, Mazzucchelli M, Girardi VAV et al (1998) Petrogenesis of the Paleoproterozoic basalt–andesite–rhyolite dyke association in the Carajas region, Amazonian craton. Lithos 43:235–265
    Rivalenti G, Mazzucchelli M, Girardi VAV et al (2000) Composition and processes of the mantle lithosphere in northeastern Brazil and Fernando de Noronha: evidence from mantle xenoliths. Contrib Mineral Petrol 138:308–325
    Rivalenti G, Mazzucchelli M, Zanetti A et al (2007) Xenoliths from Cerro de los Chenques (Patagonia): an example of slab-related metasomatism in the backarc lithospheric mantle. Lithos 99:45–67
    Roden MF, Frey FA, Francis DM (1984) An example of consequent mantle metasomatism in peridotite inclusions from Nunivak Island, Alaska. J Petrol 25:546–577
    Salters VJM, Shimizu N (1988) World-wide occurrence of HFSE-depleted mantle. Geochim Cosmochim Acta 52:2177–2182
    Scheuber E, González G (1999) Tectonics of the Jurassic-Early Cretaceous magmatic arc of the north Chilean Coastal Cordillera (22°–26°S): a story of crustal deformation along a convergent plate boundary. Tectonics 18:895–910
    Schultz F, Lehmann B, Tawackoli S, Rössling R, Belyatsky B, Dulski P (2004) Carbonatite diversity in the Central Andes: the Ayopaya alkaline province, Bolivia. Contrib Mineral Petrol 148:391–408
    Sen G, Frey FA, Shimizu N, Leeman WP (1993) Evolution of the lithosphere beneath Oahu, Hawaii: rare earth element abundances in mantle xenoliths. Earth Plan Sci Lett 119:53–69
    Shaw CS, Klügel A (2002) The pressure and temperature conditions and timing of glass formation in mantle-derived xenoliths from Baarley, West Eifel Germany: the case for amphibole breakdown, lava infiltration and mineral-melt reaction. Mineral Petrol 74:163–187
    Song Y, Frey FA (1989) Geochemistry of peridotite xenoliths in basalts from Hannuoba, eastern China: implications for subcontinental mantle heterogeneity. Geochim Cosmoch Acta 53:97–113
    Spera FJ (1984) Carbon ioxide in petrogenesis. III: role of volatiles in the ascent of alkaline-bearing magmas with special reference to xenolith-bearing mafic lavas. Contrib Mineral Petrol 88:217–232
    Speziale S, Censi P, Comin-Chiaramonti P, Ruberti E, Gomes CB (1997) Oxygen and Carbon isotopes in the Barra do Itapirapuã and Mato Preto carbonatites (southern Brazil). Mineral Petrographica Acta 40:1–21
    Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts. In: Saunders D, Norry MJ (eds) Magmatism in the ocean basins. Geol. Society, Special Paper 42: 313–345
    Taylor GK, Dashwood B, Grocott J (2005) Central Andean rotation pattern: evidence from paleomagnetic rotations of an anomalous domain in the forearc of northern Chile. Geology 33:777–780
    Velázquez VF, Comin-Chiaramonti P, Cundari A, Gomes CB, Riccomini C (2006) Cretaceous Na-alkaline magmatism from Misiones province (Paraguay): relationships with the Paleogene Na-alkaline analogue from Asunción and geodynamic significance. J Geology 114:593–614
    Viramonte JG, Kay SM, Becchio R, Escayola M, Novitski I (1999) Cretaceous rift related magmatism in central-western South America. J South Am Earth Sci 12:109–121
    Wang J, Hattori KH, Kilian R, Stern CR (2007) Metasomatism of sub-arc peridotites below southermost South America: reduction of fO2 by slab-melt. Contrib Mineral Petrol 153:607–624
    Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 42:109–121
    Zindler A, Hart SR (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14:493–571