Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Mouse leydig cells express multiple P2X receptor subunits (2009)

  • Authors:
  • USP affiliated authors: VARANDA, WAMBERTO ANTONIO - FMRP
  • USP Schools: FMRP
  • DOI: 10.1007/s11302-008-9128-9
  • Subjects: WESTERN BLOTTING; ELETROFISIOLOGIA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/s11302-008-9128-9 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green
    Informações sobre o Citescore
  • Título: Purinergic Signalling

    ISSN: 1573-9538

    Citescore - 2017: 3.29

    SJR - 2017: 1.104

    SNIP - 2017: 0.822


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FMRP1813225pcd 1813225 estantes deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ANTONIO, Ligia Subitoni; COSTA, Roberto Ribeiro; GOMES, Marcelo Damário; VARANDA, Wamberto Antonio. Mouse leydig cells express multiple P2X receptor subunits. Purinergic Signalling, Dordrecht, v. 5, n. 3, p. 277-287, 2009. DOI: 10.1007/s11302-008-9128-9.
    • APA

      Antonio, L. S., Costa, R. R., Gomes, M. D., & Varanda, W. A. (2009). Mouse leydig cells express multiple P2X receptor subunits. Purinergic Signalling, 5( 3), 277-287. doi:10.1007/s11302-008-9128-9
    • NLM

      Antonio LS, Costa RR, Gomes MD, Varanda WA. Mouse leydig cells express multiple P2X receptor subunits. Purinergic Signalling. 2009 ; 5( 3): 277-287.
    • Vancouver

      Antonio LS, Costa RR, Gomes MD, Varanda WA. Mouse leydig cells express multiple P2X receptor subunits. Purinergic Signalling. 2009 ; 5( 3): 277-287.

    Referências citadas na obra
    Aschrafi A, Sadtler S, Niculescu C, Rettinger J, Schmalzing G (2004) Trimeric architecture of homomeric P2X2 and heteromeric P2X1+2 receptor subtypes. J Mol Biol 342:333–343 doi: 10.1016/j.jmb.2004.06.092
    Bo X, Zhang Y, Nassar M, Burnstock G, Schoepfer R (1995) A P2X purinoceptor cDNA conferring a novel pharmacological profile. FEBS Lett 375:129–133 doi: 10.1016/0014-5793(95)01203-Q
    Brake AJ, Wagenbach MJ, Julius D (1994) New structural motif for ligand-gated ion channel defined by ionotropic ATP receptor. Nature 371:519–523 doi: 10.1038/371519a0
    Brône B, Moechars D, Marrannes R, Mercken M, Meert T (2007) P2X currents in peritoneal macrophages of wild type and P2X4 −/− mice. Immunol Lett 113:83–89 doi: 10.1016/j.imlet.2007.07.015
    Brown SG, Townsend-nicholson A, Jacobson KA, Burnstock G, King BF (2002) Heteromultimeric P2X1/2 receptors show a novel sensitivity to extracellular pH. J Pharmacol Exp Ther 300:673–680 doi: 10.1124/jpet.300.2.673
    Carnio EC, Varanda WA (1995) Calcium-activated potassium channels are involved in the response of mouse Leydig cells to human chorionic gonadotropin. Braz J Med Biol Res 28:813–824
    Cheewatrakoolpong B, Gilchrest H, Anthes JC, Greenfeder S (2005) Identification and characterization of splice variants of the human P2X7 ATP channel. Biochem Biophys Res Commun 332(1):17–27 doi: 10.1016/j.bbrc.2005.04.087
    Chen CC, Akopian AN, Sivilotti L, Colquhoun D, Burnstock G, Wood JN (1995) A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377(6548):428–431 doi: 10.1038/377428a0
    Chen CC, Parker MS, Barnes AP, Deininger P, Bobbin RP (2000) Functional expression of three P2X(2) receptor splice variants from guinea pig cochlea. J Neurophysiol 83:1502–1509
    Chessel IP, Michel AD, Humphrey PPA (1998) Effects of antagonists at the human recombinant P2X7 receptor. Br J Pharmacol 124:1314–1320 doi: 10.1038/sj.bjp.0701958
    Coutinho-Silva R, Persechini PM, Bissagio RD, Perfettini JL, Neto AC, Kanellopoulos JM, Motta-ly I, Dautry-varsat A, Ojcius DM (1999) P2Z/P2X7 receptor-dependent apoptosis of dendritic cells. Am J Physiol 276(5 Pt 1):C1139–C1147
    Dhulipala PD, Wang YX, Kotlikoff MI (1998) The human P2X4 receptor gene is alternatively spliced. Gene 207:259–266 doi: 10.1016/S0378-1119(97)00647-1
    Duckwitz W, Hausmann R, Aschrafi A, Schmalzing G (2006) P2X5 subunit assembly requires scaffolding by the second transmembrane domain and a conserved aspartate. J Biol Chem 281:39561–39572 doi: 10.1074/jbc.M606113200
    Egan TM, Haines WR, Voigt MM (1998) A domain contributing to the ion channel of ATP-gated P2X2 receptors identified by the substituted cysteine accessibility method. J Neurosci 18:2350–2359
    Evans RJ, Lewis C, Buell G, Valera S, North RA, Surprenant A (1995) Pharmacological characterization of heterologously expressed ATP-gated cation channels (P2X purinoceptors). Mol Pharmacol 48:178–183
    Filippini A, Riccioli A, de Cesaris P, Paniccia R, Teti A, Stefanini M, Conti M, Ziparo E (1994) Activation of inositol phospholipid turnover and calcium signaling in rat Sertoli cells by P2-purinergic receptors: modulation of follicle-stimulating hormone responses. Endocrinology 134(3):1537–1545 doi: 10.1210/en.134.3.1537
    Foresta C, Rossato M, Nogara A, Gottardello F, Bordon P, di Virgilio F (1996) Role of P2-purinergic receptors in rat Leydig cell steroidogenesis. Biochem J 320:499–504
    Garcia–Guzman M, Soto F, Laube B, Stühmer W (1996) Molecular cloning and functional expression of a novel rat heart P2X purinoceptor. FEBS Lett 388:123–127 doi: 10.1016/0014-5793(96)00499-1
    Guo C, Masin M, Qureshi OS, Murrell-Lagnado RD (2007) Evidence for functional P2X4/P2X7 heteromeric receptors. Mol Pharmacol 72:1447–1456 doi: 10.1124/mol.107.035980
    Hardy LA, Harvey IJ, Chambers P, Gillespie JI (2000) A putative alternatively spliced variant of the P2X(1) purinoreceptor in human bladder. Exp Physiol 85:461–463 doi: 10.1017/S0958067000003572
    Hibell AD, Kidd EJ, Chessell IP, Humphrey PPA, Michel AD (2000) Apparent species differences in the kinetic properties of P2X7 receptors. Br J Pharmacol 130:167–173 doi: 10.1038/sj.bjp.0703302
    Jiang LH, Rassendren F, Spelta V, Surprenant A, North RA (2001) Amino acid residues involved in gating identified in the first membrane-spanning domain of the rat P2X2 receptor. J Biol Chem 276:14902–14908 doi: 10.1074/jbc.M011327200
    Jones CA, Vial C, Sellers LA, Humphrey PPA, Evans RJ, Chessell IP (2004) Functional regulation of P2X6 receptors by N-linked glycosylation: identification of a novel αβ-methylene ATP-sensitive phenotype. Mol Pharmacol 65:979–985 doi: 10.1124/mol.65.4.979
    Kawa K (1987) Existence of calcium channels and intercellular couplings in the testosterone-secreting cells of the mouse. J Physiol 393:647–666
    Khakh BS, Bao XR, Labarca C, Lester HA (1999) Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds. Nat Neurosci 2(4):322–330 doi: 10.1038/7233
    King BF, Ziganshina LE, Pintor J, Burnstock G (1996) Full sensitivity of P2X2 purinoceptor to ATP revealed by changing extracellular pH. Br J Pharmacol 117(7):1371–1373
    King BF, Townsend-Nicholson A, Wildman SS, Thomas T, Spyer KM, Burnstock G (2000) Coexpression of rat P2X2 and P2X6 subunits in Xenopus oocytes. J Neurosci 20:4871–4877
    Klinefelter GR, Hall PF, Ewing LL (1987) Effect of luteinizing hormone deprivation in situ on steroidogenesis of rat Leydig cells purified by a multistep procedure. Biol Reprod 36:769–783 doi: 10.1095/biolreprod36.3.769
    Ko WH, Au CL, Yip CY (2003) Multiple purinergic receptors lead to intracellular calcium increases in cultured rat Sertoli cells. Life Sci 72:1519–1535 doi: 10.1016/S0024-3205(02)02410-4
    Le KT, Babinski K, Séguéla P (1998) Central P2X4 and P2X6 channel subunits coassemble into a novel heteromeric ATP receptor. J Neurosci 18:7152–7159
    Lewis C, Neidhart S, Holy C, North RA, Buell G, Surprenant A (1995) Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 377:432–435 doi: 10.1038/377432a0
    Loir M (1999) Spermatogonia of rainbow trout: III. In vitro study of the proliferative response to extracellular ATP and adenosine. Mol Reprod Dev 53(4):443–450 doi: 10.1002/(SICI)1098-2795(199908)53:4<443::AID-MRD10>3.0.CO;2-7
    Mackenzie AB, Surprenant A, North RA (1999) Functional and molecular diversity of purinergic ion channel receptors. Ann N Y Acad Sci 868:716–729 doi: 10.1111/j.1749-6632.1999.tb11351.x
    Manna PR, Kero J, Tena-Sempere M, Pakarinen P, Stocco DM, Huhtaniemi IT (2001) Assessment of mechanisms of thyroid hormone action in mouse Leydig cells: regulation of the steroidogenic acute regulatory protein, steroidogenesis, and luteinizing hormone receptor function. Endocrinology 142(1):319–331 doi: 10.1210/en.142.1.319
    Manna PR, Wang XJ, Stocco DM (2003) Involvement of multiple transcription factors in the regulation of steroidogenic acute regulatory protein gene expression. Steroids 68(14):1125–1134 doi: 10.1016/j.steroids.2003.07.009
    Mateo J, Garcia-Lecea M, Miras-Portugal MT, Castro E (1998) Ca2+ signals mediated by P2X-type purinoceptors in cultured cerebellar Purkinje cells. J Neurosci 18:1704–1712
    Miller WL (1988) Molecular biology of steroid hormone synthesis. Endocr Rev 9:295–318
    Nicke A, Kerschensteiner D, Soto F (2005) Biochemical and functional evidence for heteromeric assembly of P2X1 and P2X4 subunits. J Neurochem 92:925–933 doi: 10.1111/j.1471-4159.2004.02939.x
    Nishi H, Kato F, Masaki E, Kawamura M (2002) ADP-sensitive purinoceptors induce steroidogenesis via adenylyl cyclase activation in bovine adrenocortical fasciculata cells. Br J Pharmacol 137(2):177–184 doi: 10.1038/sj.bjp.0704847
    Perez-Armendariz EM, Nadal A, Fuentes E, Spray DC (1996) Adenosine 5′-triphosphate (ATP) receptors induce intracellular calcium changes in mouse Leydig cells. Endocrine 4:239–247 doi: 10.1007/BF02738690
    Poletto-Chaves LA, Pontelli EP, Varanda WA (2006) P2X receptors in mouse Leydig cells. Am J Physiol Cell Physiol 290:1009–1017 doi: 10.1152/ajpcell.00506.2005
    Poletto-Chaves LA, Varanda WA (2008) Volume-activated chloride channels in mice Leydig cells. Pflugers Arch. doi: 10.1007/s00424-008-0525-2
    Priel A, Silberberg SD (2004) Mechanism of ivermectin facilitation of human P2X4 receptor channels. J Gen Physiol 123:281–293 doi: 10.1085/jgp.200308986
    Schumacher M, Schafer G, Holstein AF, Hilz H (1978) Rapid isolation of mouse Leydig cells by centrifugation in Percoll density gradients with complete retention of morphological and biochemical integrity. FEBS Lett 91:333–338 doi: 10.1016/0014-5793(78)81204-6
    Stoop R, Surprenant A, North RA (1997) Different sensitivities to pH of ATP-induced currents at four cloned P2X receptors. J Neurophysiol 78:1837–1840
    Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor pf extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738 doi: 10.1126/science.272.5262.735
    Tai CJ, Kang SK, Leung PC (2001) Adenosine triphosphate-evoked cytosolic calcium oscillations in human granulosa-luteal cells: role of protein kinase C. J Clin Endocrinol Metab 86(2):773–777 doi: 10.1210/jc.86.2.773
    Torres GE, Egan TM, Voigt MM (1998) Topological analysis of the ATP-gated ionotropic P2X2 receptor subunit. FEBS Lett 425:19–23 doi: 10.1016/S0014-5793(98)00179-3
    Townsend-Nicholson A, King BF, Wildman SS, Burnstock G (1999) Molecular cloning, functional characterization and possible cooperativity between the murine P2X4 and P2X4a receptors. Brain Res Mol Brain Res 64:246–254 doi: 10.1016/S0169-328X(98)00328-3
    Valera S, Hussy H, Evans RJ, Adami N, North RA, Surprenant A, Buell G (1994) A new class of ligand-gated ion channel defined by P2X receptor of extracellular ATP. Nature 371:516–519 doi: 10.1038/371516a0
    Wildman SS, Brown SG, Rahman M, Noel CA, Churchill L, Burnstock G, Unwin RJ, King BF (2002) Sensitization by extracellular Ca2+ of rat P2X5 receptor and its pharmacological properties compared with rat P2X1. Mol Pharmacol 62:957–966 doi: 10.1124/mol.62.4.957