Ver registro no DEDALUS
Exportar registro bibliográfico



An overview of the therapeutic effects of leucine supplementation on skeletal muscle under atrophic conditions (2010)

  • Authors:
  • USP Schools: EEFE
  • DOI: 10.1007/s00726-010-0636-x
  • Language: Inglês
  • Imprenta:
    • Publisher place: Wien
    • Date published: 2010
  • Source:
    • Título do periódico: Amino Acids
    • Volume/Número/Paginação/Ano: on-line, 2010
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/s00726-010-0636-x (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    Informações sobre o Citescore
  • Título: Amino Acids

    ISSN: 0939-4451

    Citescore - 2017: 2.94

    SJR - 2017: 1.135

    SNIP - 2017: 0.989

  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    EEFE1826251-10PRO 2010 014
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      NICASTRO, Humberto; ARTIOLI, G. G; COSTA, Andre dos Santos; et al. An overview of the therapeutic effects of leucine supplementation on skeletal muscle under atrophic conditions. Amino Acids, Wien, 2010. DOI: 10.1007/s00726-010-0636-x.
    • APA

      Nicastro, H., Artioli, G. G., Costa, A. dos S., Solis, M. Y., Luz, C. R. da, Blachier, F., & Lancha Junior, A. H. (2010). An overview of the therapeutic effects of leucine supplementation on skeletal muscle under atrophic conditions. Amino Acids. doi:10.1007/s00726-010-0636-x
    • NLM

      Nicastro H, Artioli GG, Costa A dos S, Solis MY, Luz CR da, Blachier F, Lancha Junior AH. An overview of the therapeutic effects of leucine supplementation on skeletal muscle under atrophic conditions. Amino Acids. 2010 ;
    • Vancouver

      Nicastro H, Artioli GG, Costa A dos S, Solis MY, Luz CR da, Blachier F, Lancha Junior AH. An overview of the therapeutic effects of leucine supplementation on skeletal muscle under atrophic conditions. Amino Acids. 2010 ;

    Referências citadas na obra
    Adams GR, Caiozzo VJ, Baldwin KM (2003) Skeletal muscle unweighting: spaceflight and ground-based models. J Appl Physiol 95:2185–2201
    Alkner BA, Tesch PA (2004) Efficacy of a gravity-independent resistance exercise device as a countermeasure to muscle atrophy during 29-day bed rest. Acta Physiol Scand 181:345–357
    Allen NK, Baker DH (1972) Quantitative efficacy of dietary isoleucine and valine for chick growth as influenced by variable quantities of excess dietary leucine. Poult Sci 51:1292–1298
    Andersen JL, Gruschy-Knudsen T, Sandri C, Larsson L, Schiaffino S (1999) Bed rest increases the amount of mismatched fibers in human skeletal muscle. J Appl Physiol 86:455–460
    Anthony JC, Anthony TG, Kimball SR, Vary TC, Jefferson LS (2000a) Orally administered leucine stimulates protein synthesis in skeletal muscle of postabsorptive rats in association with increased eIF4F formation. J Nutr 130:139–145
    Anthony JC, Yoshizawa F, Anthony TG, Vary TC, Jefferson LS, Kimball SR (2000b) Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J Nutr 130:2413–2419
    Argiles JM (2005) Cancer-associated malnutrition. Eur J Oncol Nurs 9(Suppl 2):S39–S50
    Attaix D, Mosoni L, Dardevet D, Combaret L, Mirand PP, Grizard J (2005) Altered responses in skeletal muscle protein turnover during aging in anabolic and catabolic periods. Int J Biochem Cell Biol 37:1962–1973
    Balage M, Averous J, Remond D, Bos C, Pujos-Guillot E, Papet I, Mosoni L, Combaret L, Dardevet D (2009) Presence of low-grade inflammation impaired postprandial stimulation of muscle protein synthesis in old rats. J Nutr Biochem 21:325–331
    Baker DH (2005) Tolerance for branched-chain amino acids in experimental animals and humans. J Nutr 135:1585S–1590S
    Baracos VE, Mackenzie ML (2006) Investigations of branched-chain amino acids and their metabolites in animal models of cancer. J Nutr 136:237S–242S
    Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RD (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147:755–763
    Beck SA, Tisdale MJ (1989) Nitrogen excretion in cancer cachexia and its modification by a high fat diet in mice. Cancer Res 49:3800–3804
    Biolo G, Ciocchi B, Lebenstedt M, Barazzoni R, Zanetti M, Platen P, Heer M, Guarnieri G (2004) Short-term bed rest impairs amino acid-induced protein anabolism in humans. J Physiol 558:381–388
    Block KP, Harper AE (1984) Valine metabolism in vivo: effects of high dietary levels of leucine and isoleucine. Metabolism 33:559–566
    Blomstrand E, Hassmen P, Ekblom B, Newsholme EA (1991) Administration of branched-chain amino acids during sustained exercise: effects on performance and on plasma concentration of some amino acids. Eur J Appl Physiol Occup Physiol 63:83–88
    Blouet C, Jo YH, Li X, Schwartz GJ (2009) Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit. J Neurosci 29:8302–8311
    Bohe J, Low A, Wolfe RR, Rennie MJ (2003) Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose-response study. J Physiol 552:315–324
    Brennan MF, Cerra F, Daly JM, Fischer JE, Moldawer LL, Smith RJ, Vinnars E, Wannemacher R, Young VR (1986) Report of a research workshop: branched-chain amino acids in stress and injury. JPEN J Parenter Enteral Nutr 10:446–452
    Brooks N, Cloutier GJ, Cadena SM, Layne JE, Nelsen CA, Freed AM, Roubenoff R, Castaneda-Sceppa C (2008) Resistance training and timed essential amino acids protect against the loss of muscle mass and strength during 28 days of bed rest and energy deficit. J Appl Physiol 105:241–248
    Burd NA, Tang JE, Moore DR, Phillips SM (2009) Exercise training and protein metabolism: influences of contraction, protein intake, and sex-based differences. J Appl Physiol 106:1692–1701
    Buse MG, Reid SS (1975) Leucine. A possible regulator of protein turnover in muscle. J Clin Invest 56:1250–1261
    Busquets S, Alvarez B, Llovera M, Agell N, Lopez-Soriano FJ, Argiles JM (2000) Branched-chain amino acids inhibit proteolysis in rat skeletal muscle: mechanisms involved. J Cell Physiol 184:380–384
    Caperuto EC, Tomatieli RV, Colquhoun A, Seelaender MC, Costa Rosa LF (2007) Beta-hydoxy-beta-methylbutyrate supplementation affects Walker 256 tumor-bearing rats in a time-dependent manner. Clin Nutr 26:117–122
    Carrithers JA, Tesch PA, Trieschmann J, Ekberg A, Trappe TA (2002) Skeletal muscle protein composition following 5 weeks of ULLS and resistance exercise countermeasures. J Gravit Physiol 9:P155–P156
    Chen L, Li P, Wang J, Li X, Gao H, Yin Y, Hou Y, Wu G (2009) Catabolism of nitritionally essential amino acids in developing porcine enterocytes. Amino Acids 37:143–152
    Clark AJ, Yamada C, Swendseid ME (1968) Effect of l-leucine on amino acid levels in plasma and tissue of normal and diabetic rats. Am J Physiol 215:1324–1328
    Combaret L, Dardevet D, Rieu I, Pouch MN, Bechet D, Taillandier D, Grizard J, Attaix D (2005) A leucine-supplemented diet restores the defective postprandial inhibition of proteasome-dependent proteolysis in aged rat skeletal muscle. J Physiol 569:489–499
    Combaret L, Dardevet D, Béchet D, Taillandier D, Mosoni L, Attaix D (2009) Skeletal muscle proteolysis in aging. Curr Opin Clin Nutr Metab Care 12:37–41
    Crozier SJ, Kimball SR, Emmert SW, Anthony JC, Jefferson LS (2005) Oral leucine administration stimulates protein synthesis in rat skeletal muscle. J Nutr 135:376–382
    Cuthbertson DJ, Babraj J, Smith K, Wilkes E, Fedele MJ, Esser K, Rennie M (2006) Anabolic signaling and protein synthesis in human skeletal muscle after dynamic shortening or lengthening exercise. Am J Physiol Endocrinol Metab 290:E731–E738
    da Silva PM, Zoppi CC, Filiputti E, Silveira LR, Quesada I, Boschero AC, Carneiro EM (2009) Leucine supplementation enhances glutamate dehydrogenase expression and restores glucose-induced insulin secretion in protein-malnourished rats. Metabolism 59:911–913
    Daly JM, Mihranian MH, Kehoe JE, Brennan MF (1983) Effects of postoperative infusion of branched chain amino acids on nitrogen balance and forearm muscle substrate flux. Surgery 94:151–158
    Dardevet D, Sornet C, Balage M, Grizard J (2000) Stimulation of in vitro rat muscle protein synthesis by leucine decreases with age. J Nutr 130:2630–2635
    de Boer MD, Selby A, Atherton P, Smith K, Seynnes OR, Maganaris CN, Maffulli N, Movin T, Narici MV, Rennie MJ (2007) The temporal responses of protein synthesis, gene expression and cell signalling in human quadriceps muscle and patellar tendon to disuse. J Physiol 585:241–251
    De Lorenzo A, Petroni ML, Masala S, Melchiorri G, Pietrantuono M, Perriello G, Andreoli A (2003) Effect of acute and chronic branched-chain amino acids on energy metabolism and muscle performance. Diabetes Nutr Metab 16:291–297
    Denne SC, Liechty EA, Liu YM, Brechtel G, Baron AD (1991) Proteolysis in skeletal muscle and whole body in response to euglycemic hyperinsulinemia in normal adults. Am J Physiol 261:E809–E814
    Deschenes MR, Giles JA, McCoy RW, Volek JS, Gomez AL, Kraemer WJ (2002) Neural factors account for strength decrements observed after short-term muscle unloading. Am J Physiol Regul Integr Comp Physiol 282:R578–R583
    Doherty TJ (2003) Invited review: aging and sarcopenia. J Appl Physiol 95:1717–1727
    Dreyer HC, Volpi E (2005) Role of protein and amino acids in the pathophysiology and treatment of sarcopenia. J Am Coll Nutr 24:140S–145S
    Elango R, Pencharz PB, Ball RO (2002) The branched-chain amino acid requirement of parenterally fed neonatal piglets is less than enteral requirement. J Nutr 132:3123–3129
    Eley HL, Tisdale MJ (2007) Skeletal muscle atrophy, a link between depression of protein synthesis and increase in degradation. J Biol Chem 282:7087–7097
    Fajans SS, Floyd JC Jr, Knopf RF, Guntsche EM, Rull JA, Thiffault CA, Conn JW (1967) A difference in mechanism by which leucine and other amino acids induce insulin release. J Clin Endocrinol Metab 27:1600–1606
    Fearon KC (1992) The Sir David Cuthbertson Medal Lecture 1991. The mechanisms and treatment of weight loss in cancer. Proc Nutr Soc 51:251–265
    Fernstrom JD (2005) Branched-chain amino acids and brain function. J Nutr 135:1539S–1546S
    Ferrando AA, Tipton KD, Bamman MM, Wolfe RR (1997) Resistance exercise maintains skeletal muscle protein synthesis during bed rest. J Appl Physiol 82:807–810
    Filiputti E, Rafacho A, Araújo EP, Silveira LR, Trevisan A, Batista TM, Curi R, Velloso LA, Quesada I, Boschero AC, Carneiro EM (2010) Augmentation of insulin secretion by leucine supplementation in malnourished rats: possible involvement of the phosphatidylinositol 3-phosphate kinase/mammalian target protein of rapamycin pathway. Metabolism 59:635–644
    Fujita S, Volpi E (2006) Amino acids and muscle loss with aging. J Nutr 136:277S–280S
    Gelfand RA, Barrett EJ (1987) Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. J Clin Invest 80:1–6
    Gibson JN, Halliday D, Morrison WL, Stoward PJ, Hornsby GA, Watt PW, Murdoch G, Rennie MJ (1987) Decrease in human quadriceps muscle protein turnover consequent upon leg immobilization. Clin Sci (Lond) 72:503–509
    Glover EI, Phillips SM, Oates BR, Tang JE, Tarnopolsky MA, Selby A, Smith K, Rennie MJ (2008) Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion. J Physiol 586:6049–6061
    Glover EI, Yasuda N, Tarnopolsky MA, Abadi A, Phillips SM (2010) Little change in markers of protein breakdown and oxidative stress in humans in immobilization-induced skeletal muscle atrophy. Appl Physiol Nutr Metab 35:125–133
    Gomes-Marcondes MC, Ventrucci G, Toledo MT, Cury L, Cooper JC (2003) A leucine-supplemented diet improved protein content of skeletal muscle in young tumor-bearing rats. Braz J Med Biol Res 36:1589–1594
    Harper AE, Winje ME, Benton DA, Elvehjem CA (1955) Effect of amino acid supplements on growth and fat deposition in the livers of rats fed polished rice. J Nutr 56:187–198
    Harper AE, Miller RH, Block KP (1984) Branched-chain amino acid metabolism. Annu Rev Nutr 4:409–454
    Hespel P, Op’t Eijnde B, Van Leemputte M, Urso B, Greenhaff PL, Labarque V, Dymarkowski S, Van Hecke P, Richter EA (2001) Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans. J Physiol 536:625–633
    Hortobagyi T, Dempsey L, Fraser D, Zheng D, Hamilton G, Lambert J, Dohm L (2000) Changes in muscle strength, muscle fibre size and myofibrillar gene expression after immobilization and retraining in humans. J Physiol 524(Pt 1):293–304
    Hundal HS, Taylor PM (2009) Amino acid transceptors: gate keepers of nutrient exchange and regulators of nutrient signaling. Am J Physiol Endocrinol Metab 296:E603–E613
    Hutton JC, Atwater I, Malaisse WJ (1980) Fuel and signal function of 2-keto acids in insulin secretion. Horm Metab Res Suppl Suppl 10:31–37
    Iwanaka N, Egawa T, Satoubu N, Karaike K, Ma X, Masuda S, Hayashi T (2010) Leucine modulates contraction- and insulin-stimulated glucose transport and upstream signaling events in rat skeletal muscle. J Appl Physiol 108:274–282
    Jones SW, Hill RJ, Krasney PA, O’Conner B, Peirce N, Greenhaff PL (2004) Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with the regulation of skeletal muscle mass. FASEB J 18:1025–1027
    Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR (2005) Aging is associated with diminished accretion of muscle proteins after the ingestion of a small bolus of essential amino acids. Am J Clin Nutr 82:1065–1073
    Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR (2006) A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol Metab 291:E381–E387
    Kee AJ, Combaret L, Tilignac T, Souweine B, Aurousseau E, Dalle M, Taillandier D, Attaix D (2003) Ubiquitin-proteasome-dependent muscle proteolysis responds slowly to insulin release and refeeding in starved rats. J Physiol 546:765–776
    Kobayashi H, Kato H, Hirabayashi Y, Murakami H, Suzuki H (2006) Modulations of muscle protein metabolism by branched-chain amino acids in normal and muscle-atrophying rats. J Nutr 136:234S–236S
    Kraemer WJ, Ratamess NA (2004) Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc 36:674–688
    Krebs M, Krssak M, Bernroider E, Anderwald C, Brehm A, Meyerspeer M, Nowotny P, Roth E, Waldhäusl W, Roden M (2002) Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes 51:599–605
    Lemoine JK, Haus JM, Trappe SW, Trappe TA (2009) Muscle proteins during 60-day bedrest in women: impact of exercise or nutrition. Muscle Nerve 39:463–471
    Louard RJ, Fryburg DA, Gelfand RA, Barrett EJ (1992) Insulin sensitivity of protein and glucose metabolism in human forearm skeletal muscle. J Clin Invest 90:2348–2354
    Louard RJ, Barrett EJ, Gelfand RA (1995) Overnight branched-chain amino acid infusion causes sustained suppression of muscle proteolysis. Metabolism 44:424–429
    Macias AE (2004) Experimental demonstration of human weight homeostasis: implications for understanding obesity. Br J Nutr 91:479–484
    Marcell TJ (2003) Sarcopenia: causes, consequences, and preventions. J Gerontol A Biol Sci Med Sci 58:M911–M916
    Marchesini G, Dioguardi FS, Bianchi GP, Zoli M, Bellati G, Roffi L, Martines D, Abbiati R (1990) Long-term oral branched-chain amino acid treatment in chronic hepatic encephalopathy. A randomized double-blind casein-controlled trial. The Italian Multicenter Study Group. J Hepatol 11:92–101
    Marzani B, Balage M, Venien A, Astruc T, Papet I, Dardevet D, Mosoni L (2008) Antioxidant supplementation restores defective leucine stimulation of protein synthesis in skeletal muscle from old rats. J Nutr 138:2205–2211
    May RC, Piepenbrock N, Kelly RA, Mitch WE (1991) Leucine-induced amino acid antagonism in rats: muscle valine metabolism and growth impairment. J Nutr 121:293–301
    May PE, Barber A, D’Olimpio JT, Hourihane A, Abumrad NN (2002) Reversal of cancer-related wasting using oral supplementation with a combination of beta-hydroxy-beta-methylbutyrate, arginine, and glutamine. Am J Surg 183:471–479
    Meng WC, Leung KL, Ho RL, Leung TW, Lau WY (1999) Prospective randomized control study on the effect of branched-chain amino acids in patients with liver resection for hepatocellular carcinoma. Aust N Z J Surg 69:811–815
    Metter EJ, Talbot LA, Schrager M, Conwit R (2002) Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J Gerontol A Biol Sci Med Sci 57:B359–B365
    Nair KS, Woolf PD, Welle SL, Matthews DE (1987) Leucine, glucose, and energy metabolism after 3 days of fasting in healthy human subjects. Am J Clin Nutr 46:557–562
    Nair KS, Schwartz RG, Welle S (1992) Leucine as a regulator of whole body and skeletal muscle protein metabolism in humans. Am J Physiol 263:E928–E934
    Nakashima K, Ishida A, Yamazaki M, Abe H (2005) Leucine suppresses myofibrillar proteolysis by down-regulating ubiquitin-proteasome pathway in chick skeletal muscles. Biochem Biophys Res Commun 336:660–666
    Nguema GN, Debras E, Grizard J, Alliot J (2007) Amino acid supplementation prevents the loss of appetite for casein in old Lou/Cjall rats. Exp Gerontol 42:652–661
    Norton LE, Layman DK (2006) Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J Nutr 136:533S–537S
    Norton JA, Gorschboth CM, Wesley RA, Burt ME, Brennan MF (1985) Fasting plasma amino acid levels in cancer patients. Cancer 56:1181–1186
    Paddon-Jones D, Rasmussen BB (2009) Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care 12:86–90
    Paddon-Jones D, Sheffield-Moore M, Urban RJ, Sanford AP, Aarsland A, Wolfe RR, Ferrando AA (2004a) Essential amino acid and carbohydrate supplementation ameliorates muscle protein loss in humans during 28 days bedrest. J Clin Endocrinol Metab 89:4351–4358
    Paddon-Jones D, Sheffield-Moore M, Zhang XJ, Volpi E, Wolf SE, Aarsland A, Ferrando AA, Wolfe RR (2004b) Amino acid ingestion improves muscle protein synthesis in the young and elderly. Am J Physiol Endocrinol Metab 286:E321–E328
    Paddon-Jones D, Sheffield-Moore M, Cree MG, Hewlings SJ, Aarsland A, Wolfe RR, Ferrando AA (2006) Atrophy and impaired muscle protein synthesis during prolonged inactivity and stress. J Clin Endocrinol Metab 91:4836–4841
    Paddon-Jones D, Short KR, Campbell WW, Volpi E, Wolfe RR (2008) Role of dietary protein in the sarcopenia of aging. Am J Clin Nutr 87:1562S–1566S
    Phillips SM (2004) Protein requirements and supplementation in strength sports. Nutrition 20:689–695
    Phillips SM, Glover EI, Rennie MJ (2009) Alterations of protein turnover underlying disuse atrophy in human skeletal muscle. J Appl Physiol 107:645–654
    Poon RT, Yu WC, Fan ST, Wong J (2004) Long-term oral branched chain amino acids in patients undergoing chemoembolization for hepatocellular carcinoma: a randomized trial. Aliment Pharmacol Ther 19:779–788
    Pozefsky T, Felig P, Tobin JD, Soeldner JS, Cahill GF Jr (1969) Amino acid balance across tissues of the forearm in postabsorptive man. Effects of insulin at two dose levels. J Clin Invest 48:2273–2282
    Rémond D, Machebeuf M, Yven C, Buffière C, Mioche L, Mosoni L, Patureau Mirand P (2007) Postprandial whole-body protein metabolism after a meat meal is influenced by chewing efficiency in elderly subjects. Am J Clin Nutr 85:1286–1292
    Rennie MJ, Wackerhage H, Spangenburg EE, Booth FW (2004) Control of the size of the human muscle mass. Annu Rev Physiol 66:799–828
    Riazi R, Wykes LJ, Ball RO, Pencharz PB (2003) The total branched-chain amino acid requirement in young healthy adult men determined by indicator amino acid oxidation by use of L-[1–13C]phenylalanine. J Nutr 133:1383–1389
    Rieu I, Sornet C, Grizard J, Dardevet D (2004) Glucocorticoid excess induces a prolonged leucine resistance on muscle protein synthesis in old rats. Exp Gerontol 39:1315–1321
    Rieu I, Balage M, Sornet C, Giraudet C, Pujos E, Grizard J, Mosoni L, Dardevet D (2006) Leucine supplementation improves muscle protein synthesis in elderly men independently of hyperaminoacidaemia. J Physiol 575:305–315
    Rodriguez NR, Vislocky LM, Gaine PC (2007) Dietary protein, endurance exercise, and human skeletal-muscle protein turnover. Curr Opin Clin Nutr Metab Care 10:40–45
    Rose AJ, Richter EA (2009) Regulatory mechanisms of skeletal muscle protein turnover during exercise. J Appl Physiol 106:1702–1711
    Rosenberg IH (1989) Summary comments. Am J Clin Nutr 50:1231–1233
    Rous P, Kidd JG (1941) Conditional neoplasms and subthreshold neoplastic states: a study of the tar tumors of rabbits. J Exp Med 73:365–390
    Rozier CK, Elder JD, Brown M (1979) Prevention of atrophy by isometric exercise of a casted leg. J Sports Med Phys Fitness 19:191–194
    Sauberlich HE (1961) Studies on the toxicity and antagonism of amino acids for weanling rats. J Nutr 75:61–72
    Sayer AA, Syddall H, Martin H, Patel H, Baylis D, Cooper C (2008) The developmental origins of sarcopenia. J Nutr Health Aging 12:427–432
    Stoll B, Henry J, Reeds PJ, Yu H, Jahoor F, Burrin DG (1998) Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J Nutr 128:606–614
    Symons TB, Schutzler SE, Cocke TL, Chinkes DL, Wolfe RR, Paddon-Jones D (2007) Aging does not impair the anabolic response to a protein-rich meal. Am J Clin Nutr 86:451–456
    Tayek JA, Bistrian BR, Hehir DJ, Martin R, Moldawer LL, Blackburn GL (1986) Improved protein kinetics and albumin synthesis by branched chain amino acid-enriched total parenteral nutrition in cancer cachexia. A prospective randomized crossover trial. Cancer 58:147–157
    Tesch PA, von Walden F, Gustafsson T, Linnehan RM, Trappe TA (2008) Skeletal muscle proteolysis in response to short-term unloading in humans. J Appl Physiol 105:902–906
    Tessari P, Inchiostro S, Biolo G, Trevisan R, Fantin G, Marescotti MC, Iori E, Tiengo A, Crepaldi G (1987) Differential effects of hyperinsulinemia and hyperaminoacidemia on leucine-carbon metabolism in vivo. Evidence for distinct mechanisms in regulation of net amino acid deposition. J Clin Invest 79:1062–1069
    Thomason DB, Biggs RB, Booth FW (1989) Protein metabolism and beta-myosin heavy-chain mRNA in unweighted soleus muscle. Am J Physiol 257:R300–R305
    Thompson DD (2007) Aging and sarcopenia. J Musculoskelet Neuronal Interact 7:344–345
    Tipton KD, Elliott TA, Ferrando AA, Aarsland AA, Wolfe RR (2009) Stimulation of muscle anabolism by resistance exercise and ingestion of leucine plus protein. Appl Physiol Nutr Metab 34:151–161
    Trappe TA, Carrithers JA, Ekberg A, Trieschmann J, Tesch PA (2002) The influence of 5 weeks of ULLS and resistance exercise on vastus lateralis and soleus myosin heavy chain distribution. J Gravit Physiol 9:P127–P128
    Trappe TA, Burd NA, Louis ES, Lee GA, Trappe SW (2007) Influence of concurrent exercise or nutrition countermeasures on thigh and calf muscle size and function during 60 days of bed rest in women. Acta Physiol (Oxf) 191:147–159
    Trappe S, Creer A, Minchev K, Slivka D, Louis E, Luden N, Trappe T (2008) Human soleus single muscle fiber function with exercise or nutrition countermeasures during 60 days of bed rest. Am J Physiol Regul Integr Comp Physiol 294:R939–R947
    Tremblay F, Krebs M, Dombrowski L, Brehm A, Bernroider E, Roth E, Nowotny P, Waldhäusl W, Marette A, Roden M (2005) Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability. Diabetes 54:2674–2684
    Tsubuku S, Hatayama K, Katsumata T, Nishimura N, Mawatari K, Smriga M, Kimura T (2004) Thirteen-week oral toxicity study of branched-chain amino acids in rats. Int J Toxicol 23:119–126
    Veldhuizen JW, Verstappen FT, Vroemen JP, Kuipers H, Greep JM (1993) Functional and morphological adaptations following four weeks of knee immobilization. Int J Sports Med 14:283–287
    Verhoeven S, Vanschoonbeek K, Verdijk LB, Koopman R, Wodzig WK, Dendale P, van Loon LJ (2009) Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men. Am J Clin Nutr 89:1468–1475
    Waterlow JC, Garlick PJ, Millward DJ (1978) Protein turnover in mammalian tissues and in the whole body. Elsevier, Amsterdam, North Holland
    Wigmore SJ, Fearon KC, Maingay JP, Lai PB, Ross JA (1997) Interleukin-8 can mediate acute-phase protein production by isolated human hepatocytes. Am J Physiol 273:E720–E726
    Wong PW, Enriquez A, Barrera R (2001) Nutritional support in critically ill patients with cancer. Crit Care Clin 17:743–767
    Yasuda N, Glover EI, Phillips SM, Isfort RJ, Tarnopolsky MA (2005) Sex-based differences in skeletal muscle function and morphology with short-term limb immobilization. J Appl Physiol 99:1085–1092
    Zanchi NE, Nicastro H, Lancha AH Jr (2008) Potential antiproteolytic effects of l-leucine: observations of in vitro and in vivo studies. Nutr Metab (Lond) 5:20