Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Optimal control of systems with discontinuous differential equations (2010)

  • Authors:
  • USP affiliated authors: STEWART, DAVID EDWARD - ICMC
  • USP Schools: ICMC
  • DOI: 10.1007/s00211-009-0262-2
  • Subjects: CONTROLE ÓTIMO; EQUAÇÕES DIFERENCIAIS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00211-009-0262-2 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Numerische Mathematik

    ISSN: 0029-599X

    Citescore - 2017: 2.34

    SJR - 2017: 2.593

    SNIP - 2017: 2.051


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC1829726-10PROD-1829726
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      STEWART, David E; ANITESCU, Mihai. Optimal control of systems with discontinuous differential equations. Numerische Mathematick, Heidelberg, Springer Berlin, v. 114, n. 4, p. 653-695, 2010. Disponível em: < http://www.springerlink.com/content/100497/ > DOI: 10.1007/s00211-009-0262-2.
    • APA

      Stewart, D. E., & Anitescu, M. (2010). Optimal control of systems with discontinuous differential equations. Numerische Mathematick, 114( 4), 653-695. doi:10.1007/s00211-009-0262-2
    • NLM

      Stewart DE, Anitescu M. Optimal control of systems with discontinuous differential equations [Internet]. Numerische Mathematick. 2010 ; 114( 4): 653-695.Available from: http://www.springerlink.com/content/100497/
    • Vancouver

      Stewart DE, Anitescu M. Optimal control of systems with discontinuous differential equations [Internet]. Numerische Mathematick. 2010 ; 114( 4): 653-695.Available from: http://www.springerlink.com/content/100497/

    Referências citadas na obra
    Atkinson K.E.: An Introduction to Numerical Analysis, 1st edn. Wiley, New York (1978)
    Aubin J.-P., Cellina A.: Differential Inclusions: Set-Valued Maps and Viability Theory. Springer, Berlin (1984)
    Bell D.J., Jacobsen D.H.: Singular Optimal Control Problems. Mathematics in Science and Engineering, vol. 117. Academic Press, New York (1975)
    Brézis, H.: Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. North-Holland Publishing, Amsterdam, North-Holland Mathematics Studies, No. 5. Notas de Matemática (50) (1973)
    Clarke F.H.: Optimal control and the true hamiltonian. SIAM Rev. 21, 157–166 (1979)
    Clarke, F.H.: Methods of Dynamic and Nonsmooth Optimization. CBMS–NSF Reg. Conf. Ser. #57. SIAM, Philadelphia (1989)
    Clarke, F.H.: Nonsmooth Analysis and Optimization. SIAM, Philadelphia (1990). Originally published by the Canadian Mathematical Society (1983)
    Clarke F.H.: The maximum principle under minimal hypotheses. SIAM J. Control Optim. 14(6), 1078–1091 (1976)
    Driessen B.J., Sadegh N.: Minimum-time control of systems with Coulomb friction: near global optima via mixed integer linear programming. Optimal Control Appl. Methods 22(2), 51–62 (2001)
    Driessen B.J., Sadegh N.: On the discontinuity of the costates for optimal control problems with Coulomb friction. Optimal Control Appl. Methods 22(4), 197–200 (2001)
    Filippov A.F.: Differential Equations with Discontinuous Right-Hand Side. Kluwer, Dordrecht (1988)
    Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: a Modeling Language for Mathematical Programming, 2nd edn. Brooks/Cole, Thomson Learning, Pacific Grove (2003)
    Frankowska H.: Adjoint differential inclusions in necessary conditions for the minimal trajectories of differential inclusions. Ann. Inst. H. Poincaré Anal. Non Linéaire 2(2), 75–99 (1985)
    Frankowska, H.: The maximum principle for a differential inclusion problem. In: Analysis and Optimization of Systems, Part 1 (Nice, 1984), pp. 517–531. Springer, Berlin (1984)
    Frankowska H.: Le principe de maximum pour une inclusion différentielle avec des contraintes sur les états initiaux et finaux. C. R. Acad. Sci. Paris Sér. I Math. 302(16), 599–602 (1986)
    Frankowska H.: The maximum principle for an optimal solution to a differential inclusion with end points constraints. SIAM J. Control Optim. 25(1), 145–157 (1987)
    Frankowska H., Kas̀kosz B.: A maximum principle for differential inclusion problems with state constraints. Syst. Control Lett. 11(3), 189–194 (1988)
    Galán S., Feehery W.F., Barton P.I.: Parametric sensitivity functions for hybrid discrete/continuous systems. Appl. Numer. Math. 31(1), 17–47 (1999)
    Gamkrelidze, R.V.: Principles of Optimal Control Theory. Plenum Press, London (1978). Original in Russian (1975)
    Glowinski R., Kearsley A.J.: On the simulation and control of some friction constrained motions. SIAM J. Optim. 5(3), 681–694 (1995)
    Kastner-Maresch, A.: Diskretisierungsverfahren zur Lösung von Differentialinklusionen. PhD thesis, Universität Bayreuth (1990)
    Kastner-Maresch A.: Implicit Runge–Kutta methods for differential inclusions. Numer. Funct. Anal. Optim. 11, 937–958 (1990)
    Kim T.-H., Ha I.-J.: Time-optimal control of a single-DOF mechanical system with friction. IEEE Trans. Autom. Control 46(5), 751–755 (2001)
    Lipp S.C.: Brachistochrone with Coulomb friction. SIAM J. Control Optim. 35(2), 562–584 (1997)
    Maso G.D., Rampazzo F.: On systems of ordinary differential equations with measures as controls. Differ. Integral Equ. 4(4), 739–765 (1991)
    Outrata J., Kočvara M., Zowe J.: Nonsmooth Approaches to Optimization Problems with Equilibrium Constraints. Nonconvex Optimization and Its Applications, vol. 28. Kluwer, Dordrecht (1998)
    Pontryagin L.S., Boltjanskij V.G., Gamkrelidze R.V., Mishchenko E.F.: The Mathematical Theory of Optimal Processes. Interscience, New York (1962) Original in Russian (1956)
    Stewart D.E.: Numerical methods for friction problems with multiple contacts. J. Aust. Math. Soc. Ser. B 37(3), 288–308 (1996)
    Stewart D.: A high accuracy method for solving ODEs with discontinuous right-hand side. Numer. Math. 58(3), 299–328 (1990)
    Stewart, D.E.: The “Michael Schumacher” problem. http://www.cs.wisc.edu/cpnet/cpnetmeetings/iccp99/race-car/race-car.html . Accessed June 1999
    Sussmann, H.J.: Optimal control of nonsmooth systems with classically differentiable flow maps. In: Proceedings of the Sixth IFAC Symposium on Nonlinear Control Systems (NOLCOS 2004), Stuttgart (2004)
    Taubert, K.: Differenz Verfahren für gewöhnliche Anfangswertaufgaben mit unstetiger rechte Seite. In: Dold, A., Eckmann, B. (eds.) Numerische Behandlung nichtlinearer Integrodifferential- und Differentialgleichungen, pp. 137–148. Lecture Notes Series, vol. 395 (1974)
    Taubert K.: Differenzverfahren für Schwingungen mit trockener und zäher Reibung und für Regelungssysteme. Numer. Math. 26, 379–395 (1976)
    Taubert K.: Converging multistep methods for initial value problems involving multivalued maps. Computing 27, 123–136 (1981)
    Tolsma J.E., Barton P.I.: Hidden discontinuities and parametric sensitivity calculations. SIAM J. Sci. Comput. 23(6), 1861–1874 (2002) (electronic)
    van Willigenburg L.G., Loop R.P.H.: Computation of time-optimal controls applied to rigid manipulators with friction. Int. J. Control 54(5), 1097–1117 (1991)
    Vanderbei, R.J.: LOQO User’s Manual, Version 4.05. Princeton University, Operations Research and Financial Engineering Department, October 2000
    Ventura, D., Martinez, T.: Optimal control using a neural/evolutionary hybrid system. In: Proceedings of the International Joint Conference on Neural Networks, pp. 1036–1041, May (1998)
    Últimas obras dos mesmos autores vinculados com a USP cadastradas na BDPI: