Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

The beta modified Weibull distribution (2010)

  • Authors:
  • USP affiliated authors: ORTEGA, EDWIN MOISES MARCOS - ESALQ
  • USP Schools: ESALQ
  • DOI: 10.1007/s10985-010-9161-1
  • Subjects: DISTRIBUIÇÕES (PROBABILIDADE); MODELOS MATEMÁTICOS
  • Language: Inglês
  • Imprenta:
  • Source:
    • Título do periódico: Lifetime Data Analysis
    • Volume/Número/Paginação/Ano: v. 16, n. 3, July, p. 409-430, 2010
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10985-010-9161-1 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10985-010-9161-1 (Fonte: Unpaywall API)

    Título do periódico: Lifetime Data Analysis

    ISSN: 1380-7870,1572-9249



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Lifetime Data Analysis

    ISSN: 1380-7870

    Citescore - 2017: 0.94

    SJR - 2017: 0.985

    SNIP - 2017: 1.032


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SILVA, Giovana O; ORTEGA, Edwin Moisés Marcos; CORDEIRO, Gauss Moutinho. The beta modified Weibull distribution. Lifetime Data Analysis, Netherlands, v. 16, n. 3, p. 409-430, 2010. Disponível em: < hhttp://link.springer.com/article/10.1007%2Fs10985-010-9161-1 > DOI: 10.1007/s10985-010-9161-1.
    • APA

      Silva, G. O., Ortega, E. M. M., & Cordeiro, G. M. (2010). The beta modified Weibull distribution. Lifetime Data Analysis, 16( 3), 409-430. doi:10.1007/s10985-010-9161-1
    • NLM

      Silva GO, Ortega EMM, Cordeiro GM. The beta modified Weibull distribution [Internet]. Lifetime Data Analysis. 2010 ; 16( 3): 409-430.Available from: hhttp://link.springer.com/article/10.1007%2Fs10985-010-9161-1
    • Vancouver

      Silva GO, Ortega EMM, Cordeiro GM. The beta modified Weibull distribution [Internet]. Lifetime Data Analysis. 2010 ; 16( 3): 409-430.Available from: hhttp://link.springer.com/article/10.1007%2Fs10985-010-9161-1

    Referências citadas na obra
    Aarset MV (1987) How to identify bathtub hazard rate. IEEE Trans Reliab 36: 106–108
    Barakat HM, Abdelkader YH (2004) Computing the moments of order statistics from nonidentical random variables. Stat Methods Appl 13: 15–26
    Bebbington M, Lai CD, Zitikis R (2007) A flexible Weibull extension. Reliab Eng Syst Saf 92: 719–726
    Brown BW, Floyd MS, Levy LB (2002) The log F: a distribution for all seasons. Comput Stat 17: 47–58
    Carrasco JMF, Ortega EMM, Cordeiro GM (2008) A generalized modified Weibull distribution for lifetime modeling. Comput Stat Data Anal 53: 450–462
    Cox C (2008) The generalized F distribution: an umbrella for parametric survival analysis. Stat Med 27: 4301–4312
    Cox C, Chu H, Schneider MF, Mũoz A (2007) Tutorial in biostatistics: parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution. Stat Med 26: 4352–4374
    Doornik J (2007) Ox 5: object-oriented matrix programming language, 5th ed. Timberlake Consultants, London
    Eugene N, Lee C, Famoye F (2002) Beta-normal distribution and its applications. Commun Stat Theory Methods 31: 497–512
    Gradshteyn IS, Ryzhik IM (2000) Table of integrals, series, and products. Academic Press, New York
    Gupta RD, Kundu D (1999) Generalized exponential distributions. Aust NZ J Stat 41: 173–188
    Gupta RD, Kundu D (2001) Exponentiated exponential distribution: an alternative to gamma and Weibull distributions. Biomet J 43: 117–130
    Gupta AK, Nadarajah S (2004) Handbook of beta distribution and its applications. Marcel Dekker, New York
    Haupt E, Schabe H (1992) A new model for a lifetime distribution with bathtub shaped failure rate. Microelectron Reliab 32: 633–639
    Hosking JRM (1986) The theory of probability weighted moments. Research Report RC12210, IBM Thomas J. Watson Research Center, New York.
    Hosking JRM (1990) L-moments: analysis and estimation of distributions using linear combinations of order statistics. J R Stat Soc Ser B 52: 105–124
    Jones MC (2004) Family of distributions arising from distribution of order statistics. Test 13: 1–43
    Kundu D, Rakab MZ (2005) Generalized Rayleigh distribution: different methods of estimation. Comput Stat Data Anal 49: 187–200
    Lai CD, Xie M, Murthy DNP (2003) A modified Weibull distribution. Trans Reliab 52: 33–37
    Lee C, Famoye F, Olumolade O (2007) Beta-Weibull distribution: some properties and applications to censored data. J Mod Appl Stat Methods 6: 173–186
    Mudholkar GS, Srivastava DK (1993) Exponentiated Weibull family for analyzing bathtub failure-real data. IEEE Trans Reliab 42: 299–302
    Mudholkar GS, Srivastava DK, Friemer M (1995) The exponentiated Weibull family: a reanalysis of the bus-motor-failure data. Technometrics 37: 436–445
    Mudholkar GS, Srivastava DK, Kollia GD (1996) A generalization of the Weibull distribution with application to the analysis of survival data. J Am Stat Assoc 91: 1575–1583
    Nadarajah S, Gupta AK (2004) The beta Fréchet distribution. Far East J Theor Stat 14: 15–24
    Nadarajah S, Kotz S (2004) The beta Gumbel distribution. Math Prob Eng 10: 323–332
    Nadarajah S, Kotz S (2006) The beta exponential distribution. Reliab Eng Syst Saf 91: 689–697
    Nelson W (1990) Accelerated life testing: statistical models, data analysis and test plans. Wiley, New York
    Pham H, Lai CD (2007) On recent generalizations of the Weibull distribution. IEEE Trans Reliab 56: 454–458
    Rajarshi S, Rajarshi MB (1988) Bathtub distributions: a review. Commun Stat Theory Methods 17: 2521–2597
    Wang FK (2000) A new model with bathtub-shaped failure rate using an additive Burr XII distribution. Reliab Eng Syst Saf 70: 305–312
    Xie M, Lai CD (1995) Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function. Reliab Eng Syst Saf 52: 87–93
    Xie M, Tang Y, Goh TN (2002) A modified Weibull extension with bathtub failure rate function. Reliab Eng Syst Saf 76: 279–285