Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Flap tori, lattices and bounds for commutative group codes (2008)

  • Authors:
  • USP affiliated authors: SIQUEIRA, ROGÉRIO MONTEIRO DE - EACH
  • USP Schools: EACH
  • DOI: 10.1007/s10623-008-9183-9
  • Subjects: TEORIA DOS CÓDIGOS; CRIPTOLOGIA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10623-008-9183-9 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Designs, Codes, and Cryptography

    ISSN: 0925-1022

    Citescore - 2017: 1.09

    SJR - 2017: 0.549

    SNIP - 2017: 1.274


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SIQUEIRA, Rogério Monteiro de; COSTA, Sueli Irene Rodrigues. Flap tori, lattices and bounds for commutative group codes. Designs, Codes and Cryptography, New York, v. 49, n. 1-3, p. 307-321, 2008. Disponível em: < http://www.springerlink.com/content/c36150266611g202/fulltext.pdf > DOI: 10.1007/s10623-008-9183-9.
    • APA

      Siqueira, R. M. de, & Costa, S. I. R. (2008). Flap tori, lattices and bounds for commutative group codes. Designs, Codes and Cryptography, 49( 1-3), 307-321. doi:10.1007/s10623-008-9183-9
    • NLM

      Siqueira RM de, Costa SIR. Flap tori, lattices and bounds for commutative group codes [Internet]. Designs, Codes and Cryptography. 2008 ; 49( 1-3): 307-321.Available from: http://www.springerlink.com/content/c36150266611g202/fulltext.pdf
    • Vancouver

      Siqueira RM de, Costa SIR. Flap tori, lattices and bounds for commutative group codes [Internet]. Designs, Codes and Cryptography. 2008 ; 49( 1-3): 307-321.Available from: http://www.springerlink.com/content/c36150266611g202/fulltext.pdf

    Referências citadas na obra
    Biglieri E., Elia M. (1972). On the existence of groups codes for the Gaussian channel. IEEE Trans. Inform. Theory IT- 18: 399–402
    Biglieri E., Elia M. (1976). Cyclic-group codes for the Gaussian channel. IEEE Trans. Inform. Theory IT- 22: 624–629
    Böröczky K. (1978). Packing of spheres in spaces of constant curvature. Acta Math. Acad. Scient. Hung. 32: 243–261
    Boyvalenkov P.G., Danev D.P., Bumova S.P. (1996). Upper bounds on the minimum distance of spherical codes. IEEE Trans. Inform. Theory IT-42, 1576-1581
    Caire G., Biglieri E. (1995). Linear block codes over cyclic groups. IEEE Trans. Inform. Theory 41(5): 1246–1256
    Cohn H., Elkies N. (2003). New upper bounds on sphere packings I. Ann. Mathe. 157: 689–714
    Costa S.I.R., Muniz M., Palazzo R. (2004). Graphs, tessellations, and perfect codes on flat tori. IEEE Trans. Inform. Theory 50: 2363–2377
    Coxeter H.S.M. (1954). Arrangements of equal spheres in non-Euclidean spaces. Acta Math. Acad. Sci. Hungar. 4: 263–274
    Coxeter H.S.M. (1999). An upper bound for the number of equal nonoverlapping spheres that can touch another of the same size. In: Coxeter H.S.M. (eds) The Beauty of Geometry—Twelve Essays. Dover Publications, New York
    Coxeter H.S.M. (1973). Regular Polytopes, 3nd edn. Dover Publicatons, New York
    Ericson T., Zinoviev V. (2001). Codes on Euclidean Spheres. Elsevier Science Pub Co, New York
    Forney G.D., Jr. (1991). Geometrically uniform codes. IEEE Trans. Inform. Theory 37: 1241–1260
    Gantmacher F.R.: The Theory of Matrices, vol. 1. Chelsea (1959).
    Ingemarsson I. (1973). Commutative group codes for the Gaussian channel. IEEE Trans. Inform. Theory IT-19: 215–219
    Ingermasson I.: Group codes for the Gaussian channel. In: Thoma M., Wyner A. (eds.) Lecture Notes in Control and Information Theory 128, pp. 73–108. Springer-Verlag (1989).
    Kabatiansky G.A., Levenshtein V.I. (1978). Bounds for packings on a sphere and in space. Problemy Peredachi Informatsii 14: 3–25
    Levenshtein V.I. (1998). Universal bounds for codes and designs. In: Huffman W.C., Pless V., Brualdi R.A. (eds) Handbook of Coding Theory. Elsevier, Amsterdam
    Loeliger H. (1991). Signals sets matched to groups. IEEE Trans. Inform. Theory 37: 1675–1682
    Rankin R.A. (1954). The closest packing of spherical caps in n dimensions. In: Proc. Glasgow Math. Assoc. 2: 139–144
    Rogers C.A. (1958). The packing of equal spheres. Proc. London Math. Soc. 3: 609–620
    Siqueira R., Costa S.I.R.: Minimum distance upper bounds for commutative group codes. In: Proceedings of IEEE Information Theory Workshop (ITW 2006), Uruguay (2006).
    Siqueira R., Costa S.I.R.: Minimum distance upper bounds for commutative group codes: the odd case. In: Proceedings of IEEE International Telecommunications Symposium, Brazil (2006).
    Siqueira R., Costa S.I.R.: Lattices and bounds for commutative group codes. In: Augot D., Sendrller N., Tillich J. (eds.) Proceedings of the International Workshop on Coding and Cryptography, Versailles, INRIA, pp. 371–378 (2007).
    Siqueira R., Torezzan C., Costa S.I.R., Strapasson J.: Searching for optimal commutative group codes. Forthcoming paper.
    Slepian D. (1968). Group codes for the Gaussian channel. Bell Syst. Technical J. 47: 575–602
    Sloane N.J.A., Conway J.H. (1991). Sphere Packings, Lattices and Groups, 3rd edn. Springer-Verlag, New York
    Tóth L.F. (1943). Über die dichteste Kugellagerung. Math. Zeitschrift 48: 676–684
    Tóth L.F. (1943). Über eine Abschätzung des krzesten Abstandes zweier Punkte eines auf einer Kugelfläche liegenden Punktsystems. Jahresbericht Deut. Math. Verein. 53: 66–68
    Tóth L.F. (1953). On close-packings of spheres in spaces of constant curvature. Publicationes Mathematicae (Debrecen) 3: 158–167
    Vaishampayan V., Costa S.I.R. (2003). Curves on a sphere, shift-map dynamics, and error control for continuous alphabet sources. IEEE Trans. Inform. Theory 49: 1658–1672