Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Autoradiographic study on the regenerative capability of the epithelium lining the center of the cornea after multiple debridements of its peripheral region (2010)

  • Authors:
  • USP affiliated authors: SOUSA, SIDNEY JULIO DE FARIA E - FMRP ; HADDAD, ANTONIO - FMRP
  • USP Schools: FMRP; FMRP
  • DOI: 10.1007/s00417-010-1368-z
  • Subjects: EPITÉLIO (REGENERAÇÃO); CÓRNEA; CÉLULAS-TRONCO
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/s00417-010-1368-z (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Graefe's Archive for Clinical and Experimental Ophthalmology

    ISSN: 0721-832X

    Citescore - 2017: 2.08

    SJR - 2017: 1.314

    SNIP - 2017: 1.04


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FMRP1996443pcd 1996443 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SOUSA, Sidney Julio de Faria e; BARBOSA, Flávia Leão; HADDAD, Antonio. Autoradiographic study on the regenerative capability of the epithelium lining the center of the cornea after multiple debridements of its peripheral region. Graefe's Archive for Clinical and Experimental Ophthalmology, Heidelberg, v. 248, n. 8, p. 1137-1144, 2010. DOI: 10.1007/s00417-010-1368-z.
    • APA

      Sousa, S. J. de F. e, Barbosa, F. L., & Haddad, A. (2010). Autoradiographic study on the regenerative capability of the epithelium lining the center of the cornea after multiple debridements of its peripheral region. Graefe's Archive for Clinical and Experimental Ophthalmology, 248( 8), 1137-1144. doi:10.1007/s00417-010-1368-z
    • NLM

      Sousa SJ de F e, Barbosa FL, Haddad A. Autoradiographic study on the regenerative capability of the epithelium lining the center of the cornea after multiple debridements of its peripheral region. Graefe's Archive for Clinical and Experimental Ophthalmology. 2010 ; 248( 8): 1137-1144.
    • Vancouver

      Sousa SJ de F e, Barbosa FL, Haddad A. Autoradiographic study on the regenerative capability of the epithelium lining the center of the cornea after multiple debridements of its peripheral region. Graefe's Archive for Clinical and Experimental Ophthalmology. 2010 ; 248( 8): 1137-1144.

    Referências citadas na obra
    DePaiva CS, Pflugfelder SC, Li D-Q (2006) Cell size correlates with phenotype and proliferative capacity in human corneal epithelial cells. Stem Cells 24:368–375
    Dua HS, Kulkarni B, Franzco RS (2006) Quest for limbal stem cells. Clin Exp Ophthalmol 34:1–2
    DePaiva CS, Chen Z, Corrales RM, Pflugfelder SC, Li D-Q (2005) ABCG2 tranporter identifies a population of clonogenic human limbal epithelial cells. Stem Cells 23:63–73
    DiIorio E, Barbaro V, Ruzza A, Ponzin D, Pellegrini G, DeLuca M (2005) Isoforms of Np63 and the migration of ocular limbal cells in human corneal regeneration. Proc Natl Acad Sci U S A 102:9523–9528
    Dua HS, Shanmuganathan VA, Powell-Richards AO, Tighe PJ, Joseph A (2005) Limbal epithelial crypts: a novel anatomical structure an a putative limbal stem cell niche. Br J Ophthalmol 89:529–532
    Schlötzer-Schrehardt U, Kruse FE (2005) Identification and characterization of limbal stem cells. Exp Eye Res 81:247–264
    Chen Z, DePaiva CS, Luo L, Kretzer F, Pflugfelder SC, Li D-Q (2004) Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells 22:355–366
    Zieske JD, Bukusoglu G, Yankauckas MA (1992) Characterization of a potential marker for corneal epithelial stem cells. Invest Ophthalmol Vis Sci 33:143–152
    Schofield R (1983) The stem cell system. Biomed Pharmacother 37:375–380
    Goldberg MF, Bron AJ (1982) Limbal palisades of Vogt. Trans Am Ophthalm Soc 80:155–171
    Davanger M, Evensen A (1971) Role of the pericorneal papillary structure in the renewal of corneal epithelium. Nature 229:560–561
    Chang C-Y, Green CR, McGhee CNJ, Sherwin T (2008) Acute wound healing in the human central corneal epithelium appears to be independent of limbal stem cell influence. Invest Ophthalmol Vis Sci 49:5279–5286
    Majo F, Rochat A, Nicolas M, Jaoudé GA, Barrandon Y (2008) Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature 456:250–255
    Chen W, Hara K, Tian Q, Zhao K, Yoshitomi T (2007) Existence of small slow-cycling Langerhans cells in the limbal basal epithelium that express ABCG2. Exp Eye Res 84:626–634
    Li W, Hayashica Y, Chen Y-T, Tseng SCG (2007) Niche regulation of corneal epithelial stem cells at the limbus. Cell Research 17:26–36
    Revoltella RP, Papini S, Rosellini A, Michelini M (2007) Epithelial stem cells of the eye surface. Cell Prolif 40:445–461
    Charukamnoetkanok P (2006) Corneal stem cells: bridging the knowledge gap. Seminars Ophthalmol 21:1–7
    Chee KYH, Kicic A, Franzco SJW (2006) Limbal stem cells: the search for a marker. Clin Exp Ophthalmol 34:64–73
    Pajoohesh Ganji A, Stepp MA (2005) In search of markers for the stem cells of the corneal epithelium. Biol Cell 97:265–276
    Boulton M, Albon J (2004) Stem cells in the eye. Int J Biochem Cell Biol 36:643–657
    Dua HS, Joseph A, Shanmuganathan VA, Jones RE (2003) Stem cell differentiation and the effects of deficiency. Eye 17:877–885
    Lyngholm M, Vorum H, Nielsen K, Ostergaard M, Honoré B, Ehlers N (2008) Differences in the protein expression in limbal versus central human corneal epithelium – a search for stem cell markers. Exp Eye Res 87:96–105
    Kopriwa BM, Leblond CP (1962) Improvements in the coating technique for radioautography. J Histochem Cytochem 10:269–284
    Rogers AW (1979) Techniques of autoradiography, 2nd edn. Elsevier, Amsterdam
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2008) The cell cycle. In: Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (eds) Molecular Biology of the Cell. 5th Edition. Garland Science, New York, NY, pp 1053–1114
    Leblond CP (1965) The time dimension in histology. Am J Anat 116:1–28
    Leblond CP (1991) Time dimension in cell biology: a radioautographic survey of dynamic features of cells, cell components, and extracellular matrix. Protoplasma 160:5–38
    Hanna C, O’Brien JE (1960) Cell production and migration in the epithelial layer of the cornea. Arch Ophthalmol 64:536–541
    Lavker RM, Tseng SCG, Sun TT (2004) Corneal epithelial stem cell at the limbus: looking at some old problems from a new angle. Exp Eye Res 78:433–446
    Lehrer MS, Sun T-T, Lavker RM (1998) Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation. J Cell Sci 111:2867–2875
    Bron AJ, Tripathi RC, Tripathi BJ (1997) Wolff’s anatomy of the eye and orbit, 8th edn. Chapman & Hall Medical, London, UK, pp 233–279
    Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: Implications on epithelial stem cells. Cell 57:201–209
    Barbosa FL, Faria-e-Sousa SJ, Góes RM, Haddad A (2009) Regeneration of the corneal epithelium after debridement of its central region: an autoradiographic study on rabbits. Curr Eye Res 34:636–645
    Góes RM, Barbosa FL, Faria-e-Sousa SJ, Haddad A (2008) Morphological and autoradiographic studies on the corneal and limbal epithelium of rabbits. Anat Rec 291:191–203
    Haddad A (2000) Renewal of the rabbit corneal epithelium as investigated by autoradiography after intravitreal injection of 3H-thymidine. Cornea 19:378–383
    Beebe DC, Masters BR (1996) Cell lineage and the differentiation of corneal epithelium cells. Invest Ophthalmol Vis Sci 37:1815–1825
    Haskjold E, Bjerknes R, Bjerknes E (1989) Migration of cells in the rat corneal epithelium. Acta Ophthalmol 67:91–96
    Huang AJW, Tseng SCG (1991) Corneal epithelial wound healing in the absence of limbal epithelium. Invest Ophthalmol Vis Sci 32:96–105
    Kruse FE, Chen JJY, Tsai RJF, Tseng SCG (1990) Conjunctival transdifferentiation is due to the incomplete removal of limbal basal epithelium. Invest Ophthalmol Vis Sci 31:1903–1913
    Schwab IR, Isseroff RR (2000) Bioengineered corneas – the promise and the challenge. New Engl J Med 343:136–138
    Tsai RJF, Li LM, Chen JK (2000) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. New Engl J Med 343:86–93
    Barbaro V, Testa A, DiIorio E, Mavilio F, Pellegrini G, DeLuca M (2007) C/EBP regulates cell cycle and self-renewal of human limbal stem cells. J Cell Biol 177:1037–1049
    Salpeter MM, Budd GG, Mattimoe S (1974) Resolution in autoradiography using semithin sections. J Histochem Cytochem 22:217–222
    Schantz A, Schecter A (1965) Iron-hematoxilin and safrarin O as a polychrome stain for Epon sections. Stain Technol 40:279–282
    Hutcheon AEK, Sippel KC, Zieske JD (2007) Examination of the regeneration of epithelial barrier function following superficial keratectomy. Exp Eye Res 84:32–38
    Kuwabara T, Perkins DG, Cogan DG (1976) Sliding of the epithelium in experimental corneal wounds. Invest Ophthalmol 15:4–14
    Thoft RA, Friend J (1983) The X, Y, Z hypothesis of corneal epithelial maintenance. Invest Ophthalmol Vis Sci 24:1442–1443
    Szerenyi K, Wang XW, Gabrielian K, LaBree L, McDonnell PJ (1994) Immunohistochemistry with 5-bromo-2-deoxyuridine for visualization of mitotic cells in the corneal epithelium. Cornea 13:487–492
    Nagasaki T, Zhao J (2003) Centripetal movement of corneal epithelial cells in the normal adult mouse. Invest Ophthalmol Vis Sci 44:558–566
    Buck RC (1985) Measurements of centripetal migration of normal corneal epithelial cells in the mouse. Invest Ophthalmol Vis Sci 26:1296–1299
    Chahud F, Ramalho LNZ, Ramalho FS, Haddad A, Roque-Barreira MC (2009) The lectin KM+ induces corneal epithelial wound healing in rabbits. Int J Exp Pathol 90:166–173