Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Multiple pathways analysis of brain functional networks from EEG signals: an application to real data (2011)

  • Authors:
  • USP affiliated authors: RODRIGUES, FRANCISCO APARECIDO - ICMC ; COSTA, LUCIANO DA FONTOURA - IFSC
  • USP Schools: ICMC; IFSC
  • DOI: 10.1007/s10548-010-0152-z
  • Subjects: ESTATÍSTICA APLICADA; PROCESSOS ESTOCÁSTICOS; REDES NEURAIS; TEORIA DOS GRAFOS; CÓRTEX CEREBRAL (ANÁLISE); CÉREBRO (ANÁLISE;ESTUDO)
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10548-010-0152-z (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10548-010-0152-z (Fonte: Unpaywall API)

    Título do periódico: Brain Topography

    ISSN: 0896-0267,1573-6792



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Brain Topography

    ISSN: 0896-0267

    Citescore - 2017: 2.97

    SJR - 2017: 1.365

    SNIP - 2017: 0.958


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    IFSC89017300PROD017300
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      FALLANI, Fabrizio De Vico; RODRIGUES, Francisco Aparecido; COSTA, Luciano da Fontoura; et al. Multiple pathways analysis of brain functional networks from EEG signals: an application to real data. Brain Topography, New York, Springer New York, v. 23, n. Ja 2011, p. 344-354, 2011. Disponível em: < http://dx.doi.org/10.1007/s10548-010-0152-z > DOI: 10.1007/s10548-010-0152-z.
    • APA

      Fallani, F. D. V., Rodrigues, F. A., Costa, L. da F., Astolfi, L., Cincotti, F., Mattia, D., et al. (2011). Multiple pathways analysis of brain functional networks from EEG signals: an application to real data. Brain Topography, 23( Ja 2011), 344-354. doi:10.1007/s10548-010-0152-z
    • NLM

      Fallani FDV, Rodrigues FA, Costa L da F, Astolfi L, Cincotti F, Mattia D, Salinari S, Babiloni F. Multiple pathways analysis of brain functional networks from EEG signals: an application to real data [Internet]. Brain Topography. 2011 ; 23( Ja 2011): 344-354.Available from: http://dx.doi.org/10.1007/s10548-010-0152-z
    • Vancouver

      Fallani FDV, Rodrigues FA, Costa L da F, Astolfi L, Cincotti F, Mattia D, Salinari S, Babiloni F. Multiple pathways analysis of brain functional networks from EEG signals: an application to real data [Internet]. Brain Topography. 2011 ; 23( Ja 2011): 344-354.Available from: http://dx.doi.org/10.1007/s10548-010-0152-z

    Referências citadas na obra
    Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PloS Comput Biol 3(2):e17
    Astolfi L, Cincotti F, Mattia D, De Vico Fallani F, Salinari S, Ursino M, Zavaglia M, Marciani MG, Babiloni F (2006) Estimation of the cortical connectivity patterns during the intention of limb movements. IEEE Eng Med Biol Mag 25(4):32–38
    Astolfi L, Cincotti F, Mattia D, Marciani MG, Baccalà L, De Vico Fallani F, Salinari S, Ursino M, Zavaglia M, Ding L, Edgar JC, Miller GA, He B, Babiloni F (2007) A comparison of different cortical connectivity estimators for high resolution EEG recordings. Hum Brain Mapp 28(2):143–157
    Babiloni F, Babiloni C, Locche L, Cincotti F, Rossini PM, Carducci F (2000) High resolution EEG: source estimates of Laplacian-transformed somatosensory-evoked potentials using a realistic subject head model constructed from magnetic resonance images. Med Biol Eng Comput 38:512–519
    Bartolomei F, Bosma I, Klein M, Baayen JC, Reijneveld JC, Postma TJ, Heimans JJ, van Dijk BW, de Munck JC, de Jongh A, Cover KS, Stam CJ (2006) Disturbed functional connectivity in brain tumour patients: evaluation by graph analysis of synchronization matrices. Clin Neurophysiol 117:2039–2049
    Bassett DS, Meyer-Linderberg A, Achard S, Th Duke, Bullmore E (2006) Adaptive reconfiguration of fractal smallworld human brain functional networks. Proc Natl Acad Sci USA 103:19518–19523
    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex networks: Structure and dynamics. Phys Rep 424:175–308
    Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198
    Chavez M, Valencia M, Navarro V, Latora V, Martinerie J (2010) Functional modularity of background activities in normal and epileptic brain networks. Phys Rev Lett 104(11):118701
    Costa LF, Rodrigues FA. (2008). Superedges: connecting structure and dynamics in complex networks, arXiv:0801.4068v2
    De Vico Fallani F, Astolfi L, Cincotti F, Mattia D, Marciani MG, Salinari S, Kurths J, Gao S, Cichocki A, Colosimo A, Babiloni F (2007) Cortical functional connectivity networks in normal and spinal cord injured patients: evaluation by graph analysis. Hum Brain Mapp 28:1334–1336
    De Vico Fallani F, Astolfi L, Cincotti F, Mattia D, Marciani MG, Tocci A, Salinari S, Witte H, Hesse W, Gao S, Colosimo A, Babiloni F (2008) Cortical network dynamics during foot movements. Neuroinformatics 6(1):23–34
    Duffau H (2006) Brain plasticity: From pathophysiological mechanisms to therapeutic applications. J Clin Neurosci 13:885–897
    Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94:018102
    Gevins A, Le J, Martin N, Brickett P, Desmond J, Reutter B (1994) High resolution EEG: 124-channel recording, spatial deblurring and MRI integration methods. Electroencephalogr Clin Neurophysiol 39:337–358
    Goh KI, Kahng B, Kim D (2001) Universal behavior of load distribution in scale-free networks. Phys Rev Lett 87:278701
    Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–438
    Kaminski M, Ding M, Truccolo WA, Bressler S (2001) Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol Cybern 85:145–157
    Lago-Fernandez LF, Huerta R, Corbacho F, Siguenza JA (2000) Fast response and temporal coherent oscillations in small-world networks, Phys Rev Lett 84:2758–2761
    Le J, Gevins A (1993) A method to reduce blur distortion from EEG’s using a realistic head model. IEEE Trans Biomed Eng 40:517–528
    Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296:910–913
    Mattia D, Cincotti F, Astolfi L, De Vico Fallani F, Scivoletto G, Marciani M, Babiloni F (2009) Motor cortical responsiveness to attempted movements in tetraplegia: Evidence from neuroelectrical imaging. Clin Neurophysiol 120(1):181–189
    Micheloyannis S, Pachou E, Stam CJ, Vourkas M, Erimaki S, Tsirka V (2006) Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett 402:273–277
    Milgram S (1967) The small world problem. Psychol Today 1:60–67
    Pfurtsheller G, Lopes da Silva FH (1999) Event-related EEG/EMG synchronizations and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857
    Ponten SC, Bartolomei F, Stam CJ (2007) Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol 118(4):918–927
    Popivanov D, Mineva A, Krekule I (1999) EEG patterns in theta and gamma frequency range and their probable relation to human voluntary movement organization. Neurosci Lett 267:5–8
    Rodrigues FA, Costa LD (2009) A structure-dynamic approach to cortical organization: Number of paths and accessibility. J Neurosci Methods 183(1):57–62
    Rossini PM (2000) Brain redundancy: responsivity or plasticity? Ann Neurol 48(1):128–130
    Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15(9):1332–1342
    Sporns O (2002) Graph theory methods for the analysis of neural connectivity patterns. In: Kötter R (ed) Neuroscience databases A practical guide. Kluwer, Boston, pp 171–186
    Sporns O, Tononi G, Edelman GE (2000) Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw 13:909–922
    Stam CJ (2004) Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? Neurosci Lett 355:25–28
    Stam CJ, Jones BF, Manshanden I, van Walsum AM, Montez T, Verbunt JP, de Munck JC, van Dijk BW, Berendse HW, Scheltens P (2006) Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer’s disease. Neuroimage 32:1335–1344
    Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens Ph (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17:92–99
    Stephan KE, Hilgetag C-C, Burns GAPC, O’Neill MA, Young MP, Kotter R (2000) Computational analysis of functional connectivity between areas of primate cerebral cortex. Phil Trans R Soc Lond B 355:111–126
    Strogatz SH (2001) Exploring complex networks. Nature 410:268–276
    Tononi G, Sporns O, Edelman GM (1994) A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci USA 91:5033–5037
    Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442
    Zar JH (1984) Biostatistical analysis. Prentice Hall, Englrwood Cliffs