Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Data base definition and feature selection for the genetic generation of fuzzy rule bases (2010)

  • Authors:
  • USP affiliated authors: MONARD, MARIA CAROLINA - ICMC
  • USP Schools: ICMC
  • DOI: 10.1007/s12530-010-9018-6
  • Subjects: INTELIGÊNCIA ARTIFICIAL
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s12530-010-9018-6 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s12530-010-9018-6 (Fonte: Unpaywall API)

    Título do periódico: Evolving Systems

    ISSN: 1868-6478,1868-6486



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Evolving Systems

    ISSN: 1868-6478

    Citescore - 2017: 1.71

    SJR - 2017: 0.421

    SNIP - 2017: 0.704


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC2134093-10PROD-2134093
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      CINTRA, Marcos Evandro; MONARD, Maria Carolina; CAMARGO, Heloisa de Arruda. Data base definition and feature selection for the genetic generation of fuzzy rule bases. Evolving Systems, Heidelberg, Springer, v. 1, n. 4, p. 241-252, 2010. Disponível em: < http://dx.doi.org/10.1007/s12530-010-9018-6 > DOI: 10.1007/s12530-010-9018-6.
    • APA

      Cintra, M. E., Monard, M. C., & Camargo, H. de A. (2010). Data base definition and feature selection for the genetic generation of fuzzy rule bases. Evolving Systems, 1( 4), 241-252. doi:10.1007/s12530-010-9018-6
    • NLM

      Cintra ME, Monard MC, Camargo H de A. Data base definition and feature selection for the genetic generation of fuzzy rule bases [Internet]. Evolving Systems. 2010 ; 1( 4): 241-252.Available from: http://dx.doi.org/10.1007/s12530-010-9018-6
    • Vancouver

      Cintra ME, Monard MC, Camargo H de A. Data base definition and feature selection for the genetic generation of fuzzy rule bases [Internet]. Evolving Systems. 2010 ; 1( 4): 241-252.Available from: http://dx.doi.org/10.1007/s12530-010-9018-6

    Referências citadas na obra
    Alcalá R, Alcalá-Fdez J, Gacto M, Herrera F (2007) Genetic learning of membership functions for mining fuzzy association rules. IEEE Int Conf Fuzzy Syst 1:1538–1543
    Asuncion A, Newman D (2007) UCI machine learning repository. http://www.ics.uci.edu/∼mlearn/MLRepository.html
    Casillas J, Cordón O, Jesus M, Herrera F (2005) Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction. IEEE Trans Fuzzy Syst 13:13–29
    Castellano G, Castiello C, Fanelli A, Mencar C (2005) Knowledge discovery by a neuro-fuzzy modeling framework. Fuzzy Sets Syst 149:187–207
    Castro PAD, Camargo HA (2005) Focusing on interpretability and accuracy of genetic fuzzy systems. IEEE Int Conf Fuzzy Syst 1:696–701
    Chen MS, Wang SW (1999) Fuzzy clustering analysis for optimizing membership functions. Fuzzy Sets Syst 103:239–254
    Cheng HD, Chen JR (1997) Automatically determine the membership function based on the maximum entropy principle. Inf Sci 96(3–4):163–182
    Cintra ME (2007) Genetic generation of fuzzy rules with preselection of candidate rules. Master’s thesis, Federal University of Spo Carlos
    Cintra ME, Camargo HA (2007a) Fuzzy rules generation using genetic algorithms with self-adaptive selection. In: IEEE international conference on information reuse and integration, IRI, pp 261–266
    Cintra ME, Camargo HA (2007b) Genetic generation of fuzzy rules with pre-selection of candidate rules. VI Encontro Nacional de InteligOncia Artificial 1:1341–1350 (in Portuguese)
    Cintra ME, de Arruda Camargo H, Monard MC (2008) Fuzzy feature subset selection using the Wang & Mendel method. Hybrid Intell Syst 1:590–595
    Cintra ME, Camargo HA, Martin TP (2009a) Optimising the fuzzy granulation of attribute domains. In: International Fuzzy Systems Association World Conference, pp 742–747
    Cintra ME, Martin TP, Monard MC, Camargo HA (2009b) Feature subset selection using a fuzzy method. Int Conf Intell Hum Mach Syst Cybern 2:214–217
    Cordón O, Gomide FAC, Herrera F, Hoffmann F, Magdalena L (2004) Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets Syst 141(1):5–31
    Cordón O, Alcalá R, Alcalá-Fdez J, Rojas I (2007) Special section on genetic fuzzy systems. IEEE Trans Fuzzy Syst 15:533–592
    Cordon O, del Jesus MJ, Herrera F (1999) A proposal on reasoning methods in fuzzy rule-based classification systems. Int J Approx Reason 20(1):21–45
    Demšar J (2006) Statistical comparison of classifiers over multiple data sets. J Mach Learn Res 7(1):1–30
    Dou W, Ren Y, Wu Q, Ruan S, Chen Y, Bloyet D, Constans JM (2007) Fuzzy kappa for the agreement measure of fuzzy classifications. Neurocomputing 70(4-6):726–734
    Dumitrescu D, Lazzerini B, Jair L (2000) Fuzzy sets and their application to clustering and training. International Series on Computational Intelligence, CRC Press, Boca Raton
    Dunn J (1973) A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J Cybern 3(4):32–57
    Hall MA (2000) Correlation-based feature selection for discrete and numeric class Machine Learning. In: Proceedings of the 17th International Conference on Machine Learning, Morgan Kaufmann, pp 359–366
    Hoffmann F (2004) Combining boosting and evolutionary algorithms for learning of fuzzy classification rules. Fuzzy Sets Syst 141:47–58
    Holte RC (1993) Very simple classification rules perform well on most commonly used datasets. Machine Learn 11(1):63–90
    Hong TP, Chen CH, Wu YL, Lee YC (2004) Using divide-and-conquer GA strategy in fuzzy data mining. In: Proceedings of the 9th international symposium on computers and communications (ISCC’04), vol 2, pp 116–121
    Hong TP, Chen CH, Wu YL, Lee YC (2006) A GA-based fuzzy mining approach to achieve a trade-off between number of rules and suitability of membership functions. Soft Comput 10(11):1091–1101
    Ishibuchi H, Nojima Y (2006) Evolutionary multiobjective optimization for the design of fuzzy rule-based ensemble classifiers. Int J Hybrid Intell Syst 3:129–145
    Jang SR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing. Prentice Hall
    Jun AJJ, Bai MM (1989) Effects of misspecification in estimating the percentiles of some two- & three-parameter distributions. ANU, Australia
    Kaya M, Alhajj R (2003) A clustering algorithm with genetically optimized membership functions for fuzzy association rules mining. In: 12th IEEE International Conference on Fuzzy Systems, vol 2, pp 881–886
    Kaya M, Alhajj R (2004) Integrating multi-objective genetic algorithms into clustering for fuzzy association rules mining. In: ICDM’04: Proceedings of the fourth IEEE international conference on data mining, IEEE Computer Society, pp 431–434
    Liao TW, Celmins AK, Hammell RJ (1997) A fuzzy C-Means variant for the generation of fuzzy term sets. Fuzzy Sets Fuzzy Syst 135:241–257
    Liao TW, Celmins AK, Hammell RJ (2001) A fuzzy c-means variant for the generation of fuzzy term sets. Fuzzy Sets Syst 135:241–257
    Manley-Cooke P, Razaz M (2007) An efficient approach for reduction of membership functions and rules in fuzzy systems. In: Fuzzy systems conference, FUZZ-IEEE, vol 1, pp 1609–1613
    Medasani S, Kim J, Krishnapuram R (1998) An overview of membership function generation techniques for pattern recognition. Int J Approx Reason 19:391–417
    Pedrycz W (1996) Fuzzy modelling: paradigms and practice. Kluwer Academic Press, Dordrecht
    Pires MG, Camargo HC (2004) Genetic learning and optimization of fuzzy sets in fuzzy rule-based systems. IEEE Int Conf Inf Reuse Integr 44:623–628
    Wang L (2003) The WM method completed: a flexible fuzzy system approach to data mining. IEEE Int Conf Fuzzy Syst 11:768–782
    Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques with Java implementations, 2nd edn. Morgan Kaufmann
    Yu L, Liu H (2004) Efficient feature selection via analysis of relevance and redundancy. J Mach Learn Res 5:1205–1224