Ver registro no DEDALUS
Exportar registro bibliográfico



Secondary metabolites produced by Propionicimonas sp. (ENT-18) induce histological abnormalities in the sclerotia of Sclerotinia sclerotiorum (2010)

  • Authors:
  • USP affiliated authors: CÔNSOLI, FERNANDO LUIS - ESALQ
  • USP Schools: ESALQ
  • DOI: 10.1007/s10526-010-9295-9
  • Language: Inglês
  • Imprenta:
  • Source:
    • Título do periódico: BioControl
    • Volume/Número/Paginação/Ano: v. 55, n. 6, p. 811-819, 2010
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/s10526-010-9295-9 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: BioControl

    ISSN: 1386-6141

    Citescore - 2017: 2.02

    SJR - 2017: 0.813

    SNIP - 2017: 1.093

  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ESABC2135269-10Acervo de Periódicos
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ZUCCHI, Tiago D; ALMEIDA, Luis G; DOSSI, Fábio C. A; CONSOLI, Fernando Luis. Secondary metabolites produced by Propionicimonas sp. (ENT-18) induce histological abnormalities in the sclerotia of Sclerotinia sclerotiorum. BioControl, Dordrecht, v. 55, n. 6, p. 811-819, 2010. DOI: 10.1007/s10526-010-9295-9.
    • APA

      Zucchi, T. D., Almeida, L. G., Dossi, F. C. A., & Consoli, F. L. (2010). Secondary metabolites produced by Propionicimonas sp. (ENT-18) induce histological abnormalities in the sclerotia of Sclerotinia sclerotiorum. BioControl, 55( 6), 811-819. doi:10.1007/s10526-010-9295-9
    • NLM

      Zucchi TD, Almeida LG, Dossi FCA, Consoli FL. Secondary metabolites produced by Propionicimonas sp. (ENT-18) induce histological abnormalities in the sclerotia of Sclerotinia sclerotiorum. BioControl. 2010 ; 55( 6): 811-819.
    • Vancouver

      Zucchi TD, Almeida LG, Dossi FCA, Consoli FL. Secondary metabolites produced by Propionicimonas sp. (ENT-18) induce histological abnormalities in the sclerotia of Sclerotinia sclerotiorum. BioControl. 2010 ; 55( 6): 811-819.

    Referências citadas na obra
    Abdullah MT, Ali NY, Suleman P (2008) Biological control of Sclerotinia sclerotiorum (Lib.) de Bary with Trichoderma harzianum and Bacillus amyloliquefaciens. Crop Protec 27:1354–1359
    Adams PB, Ayers WA (1979) Ecology of Sclerotinia species. Phytopathology 69:896–898
    Akasaka H, Ueki A, Hanada S, Kamagata Y, Ueki K (2003) Propionicimonas paludicola gen. nov., sp. nov., a novel facultatively anaerobic, Gram-positive, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil. Int J Syst Evol Microbiol 53:1991–1998
    Anderson AS, Wellington EMH (2001) The taxonomy of Streptomyces and related genera. Int J Syst Evol Microbiol 51:797–814
    Bajpaia VK, Shina SY, Kimb HR, Kanga SC (2008) Anti-fungal action of bioconverted eicosapentaenoic acid (bEPA) against plant pathogens. Industrial Crops Prod 27:136–141
    Bardin SD, Huang HC (2001) Research on biology and control of Sclerotinia diseases in Canada. Can J Plant Pathol 23:88–98
    Boland GJ, Hall R (1994) Index of plant hosts of Sclerotinia sclerotiorum. Can J Plant Pathol 16:93–108
    Bolton MD, Thomma BPHJ, Nelson BD (2006) Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7:1–16
    Cardoso RA, Pires LTA, Zucchi TD, Zucchi FD, Zucchi TMAD (2010) Mitotic crossing-over induced by two commercial herbicides in diploid strains of the fungus Aspergillus nidulans. Gen Mol Res 9:231–238
    Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robison R, Condron MAM, Teplow DB, Stevens D, Yaver D (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiol 148:2675–2685
    Clardy J, Fischback MA, Walsh CT (2006) New antibiotic from bacterial natural products. Nature Biotech 24:1541–1550
    Coley-Smith JR (1979) Survival of plant pathogenic fungi in soil in the absence of host plants. In: Schippers B, Gams W (eds) Soil-borne plant pathogens. Academic Press, London, pp 39–57
    Coley-Smith JR, Cooke RC (1971) Survival and germination of fungal sclerotia. Annu Rev Phytopathol 9:64–92
    Demoz BT, Korsten L (2006) Bacillus subtilis attachment, colonization, and survival on avocado flowers and its mode of action on stem-end rot pathogens. Biol Control 37:68–74
    Elad Y (2000) Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Protec 19:709–714
    El-Tarabily KA, Hardy GEStJ, Sivasithamparam K, Hussein AM, Kurtboke DI (1997) The potential for the biological control of cavity-spot disease of carrots, caused by Pythium coloratum, by streptomycete and non-streptomycete actinomycetes. New Phytol 137:495–507
    El-Tarabily KA, Soliman MH, Nassar AH, Al-Hassani HA, Sivasithamparam K, McKenna F, Hardy GEStJ (2000) Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol 49:573–583
    Etchegaray A, Bueno CC, Melo IS, Tsai SM, Fiore MF, Silva-Stenico ME, Moraes LAB, Teschke O (2008) Effect of a highly concentrated lipopeptide extract of Bacillus subtilis on fungal and bacterial cells. Arch Microbiol 190:611–622
    Fernando WGD, Nakkeeran S, Zhang Y, Savchuk S (2007) Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Prot 26:100–107
    Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359
    Gardener BBM, Fravel DR (2009) Title of subordinate document. In: Biological control of plant pathogens: research, commercialization and application in USA. APSnet. . Cited 10 Jun 2009
    Hoster F, Schmitz JE, Daniel R (2005) Enrichment of chitinolytic microorganisms: isolation and characterization of a chitinase exhibiting antifungal activity against phytopathogenic fungi from a novel Streptomyces strain. Appl Microbiol Biotechnol 66:434–442
    Hu Y, Li C, Kulkarni BA, Strobel G, Lobkovsky E, Torczynski RM, Porco JA Jr (2001) Exploring chemical diversity of epoxyquinoid natural products: synthesis and biological activity of (-)-jesterone and related molecules. Organic Lett 3:1649–1652
    Huang HC, Bremer E, Hynes RK, Erickson RS (2000) Foliar application of fungal biocontrol agents for the control of white mold of dry bean caused by Sclerotinia sclerotiorum. Biol Control 18:270–276
    Ippolito A, Nigro F (2000) Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables. Crop Protec 19:715–723
    Lehr N-A, Schrey SD, Hampp R, Tarkka MT (2008) Root inoculation with a forest soil streptomycete leads to locally and systemically increased resistance against phyopathogens in Norway spruce. New Phytol 144:965–976
    McLoughlin TJ, Quinn JP, Bettermann A, Bookland R (1992) Pseudomonas cepacia suppression of sunflower wilt fungus and role of antifungal compounds in controlling the disease. Appl Environ Microbiol 58:1760–1763
    Melo IS, Sanhueza RMV (1995) Métodos de seleção de microrganismos antagônicos a fitopatógenos: manual técnico. Embrapa Meio Ambiente, Jaguariúna
    Mueller DS, Dorrance AE, Derksen RC, Ozkan E, Kurle JE, Grau CR, Gaska JM, Hartman GL, Bradley CA, Pedersen WL (2002) Efficacy of fungicides on Sclerotinia sclerotiorum and their potential for control of sclerotinia stem rot on soybean. Plant Dis 86:26–31
    Park HJ, Lee JY, Hwang IN, Yun BS, Kim BS, Hwang BK (2006) Isolation and antifungal and antioomycete activities of staurosporine from Streptomyces roseoflavus strain LS-A24. J Agric Food Chem 54:3041–3046
    Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340
    Sousa GD, Zucchi TD, Zucchi FD, Miller RG, Anjos RMA, Poli P, Zucchi TMAD (2009) Aspergillus nidulans as a biological system to detect the genotoxic effects of mercury fumes on eukaryotes. Gen Mol Res 8:404–413
    Soylu S, Yigitbas H, Soylu EM, Kurt S (2007) Antifungal effects of essential oils from oregano and fennel on Sclerotinia sclerotiorum. J Appl Microbiol 103:1021–1030
    Steadman JR (1983) White mold—a serious yield-limiting disease of bean. Plant Dis 67:346–350
    Taechowisan T, Peberdy JF, Lumyong S (2003) Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J Microbiol Biotechnol 19:381–385
    Tahtamouni MEW, Hammed KM, Saadoun IM (2006) Biological control of Sclerotinia sclerotiorum using indigenous chitinolytic actinomycete in Jordan. Plant Pathol J 22:107–114
    Turhan G, Grossmann F (1986) Investigation of a great number of actinomycete isolates on their antagonistic effects against soil-borne fungal plant pathogens by an improved method. J Phytopathol 116:238–243
    Wan M, Li G, Zhang J, Jiang D, Huang H-C (2008) Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol Control 46:552–559
    Zhou T, Boland GJ (1998) Biological control strategies for Sclerotinia diseases. In: Boland GJ, Kuykendall LD (eds) Plant microbe interactions and biological control. Dekker, New York, pp 127–156
    Zucchi TD, Zucchi FD, Poli P, Melo IS, Zucchi TMAD (2005) A short-term test adapted to detect the genotoxic effects of environmental volatile pollutants (benzene fumes) using the filamentous fungus Aspergillus nidulans. J Environ Monit 7:598–602
    Zucchi TD, Moraes LAB, Melo IS (2008) Streptomyces sp. ASBV-1 reduces aflatoxin accumulation by Aspergillus parasiticus in peanut grains. J Appl Microbiol 105:2153–2160
    Zucchi TD, Guidolin AS, Consoli FL (2010) Isolation and characterization of actinobacteria ectosymbionts from Acromyrmex subterraneus brunneus (Hymenoptera, Formicidae). Micro Res. doi: 10.1016/j.micres.2010.01.009