Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Comparative study on antioxidant effects and vascular matrix metalloproteinase-2 downregulation by dihydropyridines in renovascular hypertension (2011)

  • Authors:
  • USP affiliated authors: GERLACH, RAQUEL FERNANDA - FORP ; SANTOS, JOSE EDUARDO TANUS DOS - FMRP
  • USP Schools: FORP; FMRP
  • DOI: 10.1007/s00210-010-0573-y
  • Subjects: HIPERTENSÃO; ANTIOXIDANTES; METALOPROTEINASES
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/s00210-010-0573-y (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    Informações sobre o Citescore
  • Título: Naunyn-Schmiedeberg's Archives of Pharmacology

    ISSN: 0028-1298

    Citescore - 2017: 2.29

    SJR - 2017: 0.836

    SNIP - 2017: 0.784


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FORP2139053pcd 2139053 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MARÇAL, Diogo M. O.; RIZZI, Elen; MARTINS-OLIVEIRA, Alisson; et al. Comparative study on antioxidant effects and vascular matrix metalloproteinase-2 downregulation by dihydropyridines in renovascular hypertension. Naunyn-Schmiedeberg's Archives of Pharmacology, Heidelberg, v. 383, n. 1, p. 35-44, 2011. DOI: 10.1007/s00210-010-0573-y.
    • APA

      Marçal, D. M. O., Rizzi, E., Martins-Oliveira, A., Ceron, C. S., Guimarães, D. A., Gerlach, R. F., & Tanus-Santos, J. E. (2011). Comparative study on antioxidant effects and vascular matrix metalloproteinase-2 downregulation by dihydropyridines in renovascular hypertension. Naunyn-Schmiedeberg's Archives of Pharmacology, 383( 1), 35-44. doi:10.1007/s00210-010-0573-y
    • NLM

      Marçal DMO, Rizzi E, Martins-Oliveira A, Ceron CS, Guimarães DA, Gerlach RF, Tanus-Santos JE. Comparative study on antioxidant effects and vascular matrix metalloproteinase-2 downregulation by dihydropyridines in renovascular hypertension. Naunyn-Schmiedeberg's Archives of Pharmacology. 2011 ; 383( 1): 35-44.
    • Vancouver

      Marçal DMO, Rizzi E, Martins-Oliveira A, Ceron CS, Guimarães DA, Gerlach RF, Tanus-Santos JE. Comparative study on antioxidant effects and vascular matrix metalloproteinase-2 downregulation by dihydropyridines in renovascular hypertension. Naunyn-Schmiedeberg's Archives of Pharmacology. 2011 ; 383( 1): 35-44.

    Referências citadas na obra
    Ahmed SH, Clark LL, Pennington WR, Webb CS, Bonnema DD, Leonardi AH, McClure CD, Spinale FG, Zile MR (2006) Matrix metalloproteinases/tissue inhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix composition and structural, functional, and clinical manifestations of hypertensive heart disease. Circulation 113(17):2089–2096
    Arribas SM, Hinek A, Gonzalez MC (2006) Elastic fibres and vascular structure in hypertension. Pharmacol Ther 111(3):771–791
    Asanuma K, Magid R, Johnson C, Nerem RM, Galis ZS, O’Callaghan CJ, Williams B (2003) Uniaxial strain upregulates matrix-degrading enzymes produced by human vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 284(5):H1778–H1784
    Bouvet C, Gilbert LA, Girardot D, deBlois D, Moreau P (2005) Different involvement of extracellular matrix components in small and large arteries during chronic no synthase inhibition. Hypertension 45(3):432–437
    Castier Y, Brandes RP, Leseche G, Tedgui A, Lehoux S (2005) P47phox-dependent NADPH oxidase regulates flow-induced vascular remodeling. Circ Res 97:533–540
    Castro MM, Rizzi E, Rascado RR, Nagassaki S, Bendhack LM, Tanus-Santos JE (2004) Atorvastatin enhances sildenafil-induced vasodilation through nitric oxide-mediated mechanisms. Eur J Pharmacol 498(1–3):189–194
    Castro MM, Rizzi E, Figueiredo-Lopes L, Fernandes K, Bendhack LM, Pitol DL, Gerlach RF, Tanus-Santos JE (2008) Metalloproteinase inhibition ameliorates hypertension and prevents vascular dysfunction and remodeling in renovascular hypertensive rats. Atherosclerosis 198(2):320–331
    Castro MM, Rizzi E, Rodrigues GJ, Ceron CS, Bendhack LM, Gerlach RF, Tanus-Santos JE (2009) Antioxidant treatment reduces matrix metalloproteinase-2-induced vascular changes in renovascular hypertension. Free Radic Biol Med 46(9):1298–1307
    Castro MM, Rizzi E, Prado CM, Rossi MA, Tanus-Santos JE, Gerlach RF (2010) Imbalance between matrix metalloproteinases and tissue inhibitor of metalloproteinases in hypertensive vascular remodeling. Matrix Biol 29(3):194–201
    Ceron CS, Castro MM, Rizzi E, Montenegro MF, Fontana V, Salgado MC, Gerlach RF, Tanus-Santos JE (2010) Spironolactone and hydrochlorothiazide exert antioxidant effects and reduce vascular matrix metalloproteinase-2 activity and expression in a model of renovascular hypertension. Br J Pharmacol 160(1):77–87
    Chesler NC, Ku DN, Galis ZS (1999) Transmural pressure induces matrix-degrading activity in porcine arteries ex vivo. Am J Physiol 277(5 Pt 2):H2002–H2009
    Cohuet G, Struijker-Boudier H (2006) Mechanisms of target organ damage caused by hypertension: therapeutic potential. Pharmacol Ther 111(1):81–98
    Dias-Junior CA, Montenegro MF, Florencio BC, Tanus-Santos JE (2008) Sildenafil improves the beneficial haemodynamic effects of intravenous nitrite infusion during acute pulmonary embolism. Basic Clin Pharmacol Toxicol 103(4):374–379
    Flamant M, Placier S, Dubroca C, Esposito B, Lopes I, Chatziantoniou C, Tedgui A, Dussaule JC, Lehoux S (2007) Role of matrix metalloproteinases in early hypertensive vascular remodeling. Hypertension 50(1):212–218
    Galis ZS, Khatri JJ (2002) Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 90(3):251–262
    Godfraind T (2005) Antioxidant effects and the therapeutic mode of action of calcium channel blockers in hypertension and atherosclerosis. Philos Trans R Soc Lond B Biol Sci 360(1464):2259–2272
    Griendling KK, FitzGerald GA (2003) Oxidative stress and cardiovascular injury: part II: animal and human studies. Circulation 108(17):2034–2040
    Grote K, Flach I, Luchtefeld M, Akin E, Holland SM, Drexler H, Schieffer B (2003) Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ Res 92(11):e80–e86
    Lehoux S, Lemarie CA, Esposito B, Lijnen HR, Tedgui A (2004) Pressure-induced matrix metalloproteinase-9 contributes to early hypertensive remodeling. Circulation 109(8):1041–1047
    Luchtefeld M, Grote K, Grothusen C, Bley S, Bandlow N, Selle T, Struber M, Haverich A, Bavendiek U, Drexler H, Schieffer B (2005) Angiotensin II induces MMP-2 in a p47phox-dependent manner. Biochem Biophys Res Commun 328:183–188
    Martinez ML, Lopes LF, Coelho EB, Nobre F, Rocha JB, Gerlach RF, Tanus-Santos JE (2006) Lercanidipine reduces matrix metalloproteinase-9 activity in patients with hypertension. J Cardiovasc Pharmacol 47(1):117–122
    Martinez ML, Castro MM, Rizzi E, Fernandes K, Demacq C, Bendhack LM, Gerlach RF, Tanus-Santos JE (2008a) Lercanidipine reduces matrix metalloproteinase-2 activity and reverses vascular dysfunction in renovascular hypertensive rats. Eur J Pharmacol 591(1–3):224–230
    Martinez ML, Rizzi E, Castro MM, Fernandes K, Bendhack LM, Gerlach RF, Tanus-Santos JE (2008b) Lercanidipine decreases vascular matrix metalloproteinase-2 activity and protects against vascular dysfunction in diabetic rats. Eur J Pharmacol 599(1–3):110–116
    Mason RP, Marche P, Hintze TH (2003) Novel vascular biology of third-generation L-type calcium channel antagonists: ancillary actions of amlodipine. Arterioscler Thromb Vasc Biol 23(12):2155–2163
    Matrisian LM (1994) Matrix metalloproteinase gene expression. Ann NY Acad Sci 732:42–50
    Montenegro MF, Neto-Neves EM, Dias-Junior CA, Ceron CS, Castro MM, Gomes VA, Kanashiro A, Tanus-Santos JE (2010) Quercetin restores plasma nitrite and nitroso species levels in renovascular hypertension. Naunyn Schmiedebergs Arch Pharmacol 382(4):293–301
    Murphy G, Willenbrock F, Crabbe T, O’Shea M, Ward R, Atkinson S, O’Connell J, Docherty A (1994) Regulation of matrix metalloproteinase activity. Ann NY Acad Sci 732:31–41
    Nelson KK, Melendez JA (2004) Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 37(6):768–784
    Newby AC (2006) Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc Res 69(3):614–624
    Okamoto T, Akaike T, Sawa T, Miyamoto Y, van der Vliet A, Maeda H (2001) Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. J Biol Chem 276(31):29596–29602
    Ra HJ, Parks WC (2007) Control of matrix metalloproteinase catalytic activity. Matrix Biol 26(8):587–596
    Raffetto JD, Khalil RA (2008) Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol 75(2):346–359
    Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS (1996) Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest 98:2572–2579
    Sica DA (2006) Pharmacotherapy review: calcium channel blockers. J Clin Hypertens (Greenwich) 8(1):53–56
    Sluijter JP, de Kleijn DP, Pasterkamp G (2006) Vascular remodeling and protease inhibition—bench to bedside. Cardiovasc Res 69(3):595–603
    Taddei S, Virdis A, Ghiadoni L, Magagna A, Pasini AF, Garbin U, Cominacini L, Salvetti A (2001) Effect of calcium antagonist or beta blockade treatment on nitric oxide-dependent vasodilation and oxidative stress in essential hypertensive patients. J Hypertens 19(8):1379–1386
    Tomassoni D, Sabbatini M, Amenta F (2003) Effect of different dihydropyridine-type Ca2+ antagonists on left ventricle hypertrophy and coronary changes in spontaneously hypertensive rats. J Cardiovasc Pharmacol 41(4):544–552
    Van Wart HE, Birkedal-Hansen H (1990) The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA 87:5578–5582
    Viappiani S, Nicolescu AC, Holt A, Sawicki G, Crawford BD, Leon H, van Mulligen T, Schulz R (2009) Activation and modulation of 72 kDa matrix metalloproteinase-2 by peroxynitrite and glutathione. Biochem Pharmacol 77(5):826–834
    Watts SW, Rondelli C, Thakali K, Li X, Uhal B, Pervaiz MH, Watson RE, Fink GD (2007) Morphological and biochemical characterization of remodeling in aorta and vena cava of DOCA-salt hypertensive rats. Am J Physiol Heart Circ Physiol 292(5):H2438–H2448
    Yasmin McEniery CM, Wallace S, Dakham Z, Pulsalkar P, Maki-Petaja K, Ashby MJ, Cockcroft JR, Wilkinson IB (2005) Matrix metalloproteinase-9 (MMP-9), MMP-2, and serum elastase activity are associated with systolic hypertension and arterial stiffness. Arterioscler Thromb Vasc Biol 25(2):372
    Yue H, Uzui H, Shimizu H, Nakano A, Mitsuke Y, Ueda T, Lee JD (2004) Different effects of calcium channel blockers on matrix metalloproteinase-2 expression in cultured rat cardiac fibroblasts. J Cardiovasc Pharmacol 44(2):223–230