Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Genetic polymorphisms involved in folate metabolism and concentrations of methylmalonic acid and folate on plasma homocysteine and risk of coronary artery disease (2010)

  • Authors:
  • USP affiliated authors: VANNUCCHI, HELIO - FMRP
  • USP Schools: FMRP
  • DOI: 10.1007/s11239-009-0321-7
  • Subjects: POLIMORFISMO; VITAMINA B12 (DEFICIÊNCIA); DOENÇAS CARDIOVASCULARES
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/s11239-009-0321-7 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Journal of Thrombosis and Thrombolysis

    ISSN: 0929-5305

    Citescore - 2017: 2.3

    SJR - 2017: 0.991

    SNIP - 2017: 0.899


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FMRP2167644pcd 2167644 estantes deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      BISELLI, Patrícia Matos; GUERZONI, Alexandre Rodrigues; GODOY, Moacir Fernandes de; et al. Genetic polymorphisms involved in folate metabolism and concentrations of methylmalonic acid and folate on plasma homocysteine and risk of coronary artery disease. Journal of Thrombosis and Thrombolysis, New York, v. 29, n. 1, p. 32-40, 2010. DOI: 10.1007/s11239-009-0321-7.
    • APA

      Biselli, P. M., Guerzoni, A. R., Godoy, M. F. de, Eberlin, M. N., Haddad, R., Carvalho, V. M., et al. (2010). Genetic polymorphisms involved in folate metabolism and concentrations of methylmalonic acid and folate on plasma homocysteine and risk of coronary artery disease. Journal of Thrombosis and Thrombolysis, 29( 1), 32-40. doi:10.1007/s11239-009-0321-7
    • NLM

      Biselli PM, Guerzoni AR, Godoy MF de, Eberlin MN, Haddad R, Carvalho VM, Vannucchi H, Bertelli ÉCP, Goloni-Bertollo EM. Genetic polymorphisms involved in folate metabolism and concentrations of methylmalonic acid and folate on plasma homocysteine and risk of coronary artery disease. Journal of Thrombosis and Thrombolysis. 2010 ; 29( 1): 32-40.
    • Vancouver

      Biselli PM, Guerzoni AR, Godoy MF de, Eberlin MN, Haddad R, Carvalho VM, Vannucchi H, Bertelli ÉCP, Goloni-Bertollo EM. Genetic polymorphisms involved in folate metabolism and concentrations of methylmalonic acid and folate on plasma homocysteine and risk of coronary artery disease. Journal of Thrombosis and Thrombolysis. 2010 ; 29( 1): 32-40.

    Referências citadas na obra
    Sadeghian S, Fallahi F, Salarifar M et al (2006) Homocysteine, vitamin B12 and folate levels in premature coronary artery disease. BMC Cardiovasc Disord 6:38–45. doi: 10.1186/1471-2261-6-38
    Finkelstein JD (1998) The metabolism of homocysteine: pathways and regulation. Eur J Pediatr 157(Suppl 2):40–44. doi: 10.1007/PL00014300
    Weisberg IS, Jacques PF, Selhub J et al (2001) The 1298A3C polymorphism in methylenetetrahydrofolate reductase (MTHFR): in vitro expression and association with homocysteine. Atherosclerosis 156:409–415. doi: 10.1016/S0021-9150(00)00671-7
    Laraqui A, Allami A, Carrie A et al (2006) Influence of methionine synthase (A2756G) and methionine synthase reductase (A66G) polymorphisms on plasma homocysteine levels and relation to risk of coronary artery disease. Acta Cardiol 61:51–61. doi: 10.2143/AC.61.1.2005140
    Mager A, Battler A, Birnbaum Y et al (2002) Plasma homocysteine, methylene-tetrahydrofolate reductase genotypes, and age at onset of symptoms of myocardial ischemia. Am J Cardiol 89:919–923. doi: 10.1016/S0002-9149(02)02239-7
    Cesari M, Rossi GP, Sticchi D et al (2005) Is homocysteine important as risk factor for coronary heart disease? Nutr Metab Cardiovasc Dis 15:140–147. doi: 10.1016/j.numecd.2004.04.002
    Nishtar S (1999) The role of vitamins as risk modifying agents in coronary artery disease. Pak J Cardiol 10:5–7
    Robinson K, Arheart K, Refsum H et al (1998) Low circulating folate and vitamin B6 concentrations: risk factors for stroke, peripheral vascular disease, and coronary artery disease: European COMAC Group. Circulation 97:437–443
    Robertson J, Iemolo F, Stabler SP et al (2005) Vitamin B12, homocysteine and carotid plaque in the era of folic acid fortification of enriched cereal grain products. CMAJ 172:1569–1573. doi: 10.1503/cmaj.045055
    Savage D, Lindenbaum J, Stabler S et al (1994) Sensitivity of serum methylmalonic acid and total homocysteine determinations for diagnosing cobalamin and folate deficiencies. Am J Med 3:239–246. doi: 10.1016/0002-9343(94)90149-X
    Klee GG (2000) Cobalamin and folate evaluation: measurement of methylmalonic acid and homocysteine vs vitamin B(12) and folate. Clin Chem 46:1277–1283
    Kovachy RJ, Copley SD, Allen RH (1983) Recognition, isolation, and characterization of rat liver d-methylmalonyl coenzyme A hydrolase. J Biol Chem 258:11415–11421
    Stabler SP, Marcell PD, Allen RH (1985) Isolation and characterization of d, l-methylmalonyl coenzyme A racemase from rat liver. Arch Biochem Biophys 241:252–264. doi: 10.1016/0003-9861(85)90381-9
    Arruda VR, Siqueira LH, Gonçalves MS et al (1998) Prevalence of the mutation C677 → T in the Methylenetetrahydrofolate reductase gene among distinct ethnic groups in Brazil. Am J Med Genet 78:332–335. doi: 10.1002/(SICI)1096-8628(19980724)78:4<332::AID-AJMG5>3.0.CO;2-N
    Haddad R, Mendes MA, Hoehr NF et al (2001) Amino acid quantitation in aqueous matrices via trap and release membrane introduction mass spectrometry: homocysteine in human plasma. Analyst (Lond) 126:1212–1215. doi: 10.1039/b104038n
    Vellasco AP, Haddad R, Eberlin MN et al (2002) Combined cysteine and homocysteine quantitation in plasma by trap and release membrane introduction mass spectrometry. Analyst (Lond) 127:1050–1053. doi: 10.1039/b203832c
    Carvalho VM, Kok F (2008) Determination of serum methylmalonic acid by alkylative extraction and liquid chromatography coupled to tandem mass spectrometry. Anal Biochem 381:67–73. doi: 10.1016/j.ab.2008.06.023
    Ribeiro AB, Cardoso MA (2002) Construção de um questionário de freqüência alimentar como subsídio para programas de prevenção de doenças crônicas não transmissíveis. Revista de Nutrição—Campinas 15:201–207
    Institute of Medicine (1998) Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. 7 National Academy Press, Washington (DC)
    Abdel-Rahman SZ, Nouraldeen AM, Ahmed AE (1994) Molecular interaction of [2, 3–14C] acrylonitrile with DNA in gastric tissues of rat. J Biochem Toxicol 9:191–198. doi: 10.1002/jbt.2570090404
    Bova I, Chapman J, Sylantiev C et al (1999) The A677 V methylenetetrahydrofolate reductase gene polymorphism and carotid atherosclerosis. Stroke 30:2180–2182
    Ranjith N, Pegoraro RJ, Rom L (2003) Risk factors and methylenetetrahydrofolate reductase gene polymorphisms in a young South African Indian-based population with acute myocardial infarction. Cardiovasc J S Afr 14:127–132
    Austin RC, Lentz SR, Werstuck GH (2004) Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ 11(Suppl 1):56–64. doi: 10.1038/sj.cdd.4401451
    Nihei S, Tasaki H, Yamashita K et al (2004) Hyperhomocysteinemia is associated with human coronary atherosclerosis through the reduction of the ratio of endothelium-bound to basal extracellular superoxide dismutase. Circ J 68:822–828. doi: 10.1253/circj.68.822
    Yilmaz H, Isbir S, Agachan B et al (2006) C677T mutation of methylenetetrahydrofolate reductase gene and serum homocysteine levels in Turkish patients with coronary artery disease. Cell Biochem Funct 24:87–90. doi: 10.1002/cbf.1206
    Haviv YS, Shpichinetsky V, Goldschmidt N et al (2002) The common mutations C677T and A1298C in the human methylenetetrahydrofolate reductase gene are associated with hyperhomocysteinemia and cardiovascular disease in hemodialysis patients. Nephron 92:120–126. doi: 10.1159/000064485
    Meisel C, Cascorbi I, Gerloff T et al (2001) Identification of six methylenetetrahydrofolate reductase (MTHFR) genotypes resulting from common polymorphisms: impact on plasma homocysteine levels and development of coronary artery disease. Atherosclerosis 154:651–658. doi: 10.1016/S0021-9150(00)00679-1
    Guerzoni AR, Pavarino-Bertelli EC, Godoy MF et al (2007) Methylenetetrahydrofolate reductase gene polymorphism and its association with coronary artery disease. Sao Paulo Med J 125:4–8. doi: 10.1590/S1516-31802007000100002
    Kolling K, Ndrepepa G, Koch W et al (2004) Methylenetetrahydrofolate reductase gene C677T and A1298C polymorphisms, plasma homocysteine, folate, and vitamin B12 levels and the extent of coronary artery disease. Am J Cardiol 93:1201–1206. doi: 10.1016/j.amjcard.2004.02.009
    Huh HJ, Chi HS, Shim EH et al (2006) Gene-nutrition interactions in coronary artery disease: correlation between the MTHFR C677T polymorphism and folate and homocysteine status in a Korean population. Thromb Res 117:501–506. doi: 10.1016/j.thromres.2005.04.009
    Jee SH, Song KS, Shim WH et al (2002) Major gene evidence after MTHFR-segregation analysis of serum homocysteine in families of patients undergoing coronary arteriography. Hum Genet 111:128–135. doi: 10.1007/s00439-002-0757-8
    Kebert CB, Eichner JE, Moore WE et al (2006) Relationship of the 1793G-A and 677C-T polymorphisms of the 5,10-methylenetetrahydrofolate reductase gene to coronary artery disease. Dis Markers 22:293–301
    Weisberg I, Tran P, Christensen B et al (1998) A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab 64:169–172. doi: 10.1006/mgme.1998.2714
    Szczeklik A, Sanak M, Jankowski M et al (2001) Mutation A1298C of methylene tetrahydrofolate reductase: risk for early coronary disease not associated with hyperhomocysteinemia. Am J Med Genet 101:36–39. doi: 10.1002/ajmg.1315
    Abu-Amero KK, Wyngaard CA, Dzimiri N (2003) Prevalence and role of methylenetetrahydrofolate reductase 677 C → T and 1298 A → C polymorphisms in coronary artery disease in arabs. Arch Pathol Lab Med 127:1349–1352
    Klerk M, Lievers KJA, Kluijtmans LAJ et al (2003) The 2756A>G in the gene encoding methionine synthase: its relation with plasma homocysteine levels and risk of coronary heart disease in a Dutch case-control study. Thromb Res 110:87–91. doi: 10.1016/S0049-3848(03)00341-4
    D’Angelo A, Coppola A, Madonna P et al (2000) The role of vitamin B12 in fasting hyperhomocysteinemia and its interaction with the homozygous C677T mutation of the methylenetetrahydrofolate reductase (MTHFR) gene. A case-control study of patients with early-onset thrombotic events. Thromb Haemost 83:563–570
    Morita H, Kurihara H, Sugiyama T et al (1999) Polymorphism of the methionine synthase gene-association with homocysteine metabolism and late-onset vascular diseases in the Japanese population. Arteriol Thromb Vasc Biol 19:298–302
    Chen J, Stampfer MJ, Ma J et al (2001) Influence of a methionine synthase (D919G) polymorphism on plasma homocysteine and folate levels and relation to risk of myocardial infarction. Atherosclerosis 154:667–672. doi: 10.1016/S0021-9150(00)00469-X
    Wang XL, Cai H, Cranney G et al (1998) The frequency of a common mutation of the methionine synthase gene in the Australian population and its relation to smoking and coronary artery disease. J Cardiovasc Risk 5:289–295. doi: 10.1097/00043798-199810000-00001
    Bates CJ, Pentieva KD, Prentice A et al (1999) Plasma pyridoxal phosphate and pyridoxic acid and their relationship to plasma homocysteine in a representative sample of British men and women aged 65 years and over. Br J Nutr 81:191–201
    Siri PW, Verhoef P, Kok FJ (1998) Vitamins B6, B12, and folate: association with plasma total homocysteine and risk of coronary atherosclerosis. J Am Coll Nutr 17:435–441
    Busch M, Franke S, Müller A et al (2004) Potential cardiovascular risk factors in chronic kidney disease: AGEs, total homocysteine and metabolites, and the C-reactive protein. Kidney Int 66:338–347. doi: 10.1111/j.1523-1755.2004.00736.x
    Wang J, Sim AS, Wang XL et al (2008) Relations between markers of renal function, coronary risk factors and the occurrence ans severity of coronary artery disease. Atherosclerosis 197:853–859. doi: 10.1016/j.atherosclerosis.2007.07.034
    Colman N (1981) Laboratory assessment of folate status. Clin Lab Med 1:775–796
    Iqbal MP, Ishaq M, Kazmi KA et al (2005) Role of vitamins B6, B12 and folic acid on hyperhomocysteinemia in a Pakistani population of patients with acute myocardial infarction. Nutr Metab Cardiovasc Dis 15:100–108. doi: 10.1016/j.numecd.2004.05.003
    Verhoef P, Stampfer MJ, Buring JE et al (1996) Homocysteine metabolism and risk of myocardial infarction: relation with vitamins B6, B12, and folate. Am J Epidemiol 143:845–859
    Riboli E, Ronnholm H, Saracci R (1987) Biological markers of diet. Cancer Surv 6:685–718
    Kapiszewska M, Kalemba M, Wojciech U et al (2005) Uracil misincorporation into DNA of leukocytes of young women with positive folate balance depends on plasma vitamin B12 concentrations and methylenetetrahydrofolate reductase polymorphisms. A pilot study. J Nutr Biochem 16:467–478. doi: 10.1016/j.jnutbio.2005.01.018
    Bagley PJ, Selhub J (1998) A common mutation in the methylenetetrahydrofolate reductase gene is associated with an accumulation of formylated tetrahydrofolates in red blood cells. Proc Natl Acad Sci USA 95:13217–13220. doi: 10.1073/pnas.95.22.13217
    Girelli D, Martinelli N, Pizzolo F et al (2003) The interaction between MTHFR 677 C → T genotype and folate status is a determinant of coronary atherosclerosis risk. J Nutr 133:1281–1285
    Kluijtmans LA, Young IS, Boreham CA et al (2003) Genetic and nutritional factors contributing to hyperhomocysteinemia in young adults. Blood 101:2483–2488. doi: 10.1182/blood.V101.7.2483
    Geisel J, Zimbelmann I, Schorr H et al (2001) Genetic defects as important factors for moderate hyperhomocysteinemia. Clin Chem Lab Med 39:698–704. doi: 10.1515/CCLM.2001.115
    Hyndman ME, Bridge PJ, Warnica JW et al (2000) Effect of heterozygosity for the methionine synthase 2756 A–>G mutation on the risk for recurrent cardiovascular events. Am J Cardiol 86:1144–1146. doi: 10.1016/S0002-9149(00)01177-2
    Vitarelli A, De Curtis G, Conde Y et al (2002) Assessment of congenital coronary artery fistulas by transesophageal color Doppler echocardiography. Am J Med 113:127–133. doi: 10.1016/S0002-9343(02)01157-9
    Nieman K, Rensing BJ, Van Geuns RJ et al (2002) Usefulness of multislice computed tomography for detecting obstructive coronary artery disease. Am J Cardiol 89:913–918. doi: 10.1016/S0002-9149(02)02238-5