Ver registro no DEDALUS
Exportar registro bibliográfico



Effect of different resistance-training regimens on the WNT-signaling pathway (2011)

  • Authors:
  • USP Schools: EEFE; EEFE; ICB; EACH
  • DOI: 10.1007/s00421-011-1874-7
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00421-011-1874-7 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s00421-011-1874-7 (Fonte: Unpaywall API)

    Título do periódico: European Journal of Applied Physiology

    ISSN: 1439-6319,1439-6327

      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: European Journal of Applied Physiology

    ISSN: 1439-6319

    Citescore - 2017: 2.45

    SJR - 2017: 1.186

    SNIP - 2017: 1.215

  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    EEFE2173086-10PRO 2011 010
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      LEAL, Marcelo Larciprete; LAMAS, Leonardo; AOKI, Marcelo Saldanha; et al. Effect of different resistance-training regimens on the WNT-signaling pathway. European Journal of Applied Physiology, Berlin, 2011. Disponível em: < > DOI: 10.1007/s00421-011-1874-7.
    • APA

      Leal, M. L., Lamas, L., Aoki, M. S., Ugrinowitsch, C., Ramos, M. S. C., Tricoli, V. A. A., & Moriscot, A. S. (2011). Effect of different resistance-training regimens on the WNT-signaling pathway. European Journal of Applied Physiology. doi:10.1007/s00421-011-1874-7
    • NLM

      Leal ML, Lamas L, Aoki MS, Ugrinowitsch C, Ramos MSC, Tricoli VAA, Moriscot AS. Effect of different resistance-training regimens on the WNT-signaling pathway [Internet]. European Journal of Applied Physiology. 2011 ;Available from:
    • Vancouver

      Leal ML, Lamas L, Aoki MS, Ugrinowitsch C, Ramos MSC, Tricoli VAA, Moriscot AS. Effect of different resistance-training regimens on the WNT-signaling pathway [Internet]. European Journal of Applied Physiology. 2011 ;Available from:

    Referências citadas na obra
    Alao JP (2007) The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol Cancer 6:24. doi: 10.1186/1476-4598-6-24
    Amit S, Hatzubai A, Birman Y, Andersen JS, Ben-Shushan E, Mann M, Ben-Neriah Y, Alkalay I (2002) Axin-mediated cki phosphorylation of beta-catenin at ser 45: a molecular switch for the WNT pathway. Genes Dev 16(9):1066–1076
    Angelis E, Garcia A, Chan SS, Schenke-Layland K, Ren S, Goodfellow SJ, Jordan MC, Roos KP, White RJ, MacLellan WR (2008) A cyclin D2–Rb pathway regulates cardiac myocyte size and RNA polymerase iii after biomechanical stress in adult myocardium. Circ Res 102(10):1222–1229
    Armstrong DD, Esser KA (2005) WNT/beta-catenin signaling activates growth-control genes during overload-induced skeletal muscle hypertrophy. Am J Physiol 289(4):C853–C859
    Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, Andrew D, Nathans J, Nusse R (1996) A new member of the frizzled family from drosophila functions as a wingless receptor. Nature 382(6588):225–230
    Bosco C, Belli A, Astrua M, Tihanyi J, Pozzo R, Kellis S, Tsarpela O, Foti C, Manno R, Tranquilli C (1995) A dynamometer for evaluation of dynamic muscle work. Eur J Appl Physiol 70:379–386
    Brown LE, Weir JP (2001) ASEP procedures recommendation I: accurate assessment of muscular strength and power. JEPonline 4(3):1–21
    Burd NA, West DW, Staples AW, Atherton PJ, Baker JM, Moore DR, Holwerda AM, Parise G, Rennie MJ, Baker SK, Phillips SM (2010) Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS One 5(8):e12033
    Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29(1):23–39
    Campos GE, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, Ragg KE, Ratamess NA, Kraemer WJ, Staron RS (2002) Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol 88(1–2):50–60
    Chapman DW, Newton M, McGuigan M, Nosaka K (2008) Effect of lengthening contraction velocity on muscle damage of the elbow flexors. Med Sci Sports Exerc 40(5):926–933
    Coffey VG, Hawley JA (2007) The molecular bases of training adaptation. Sports Med 37(9):737–763
    Farthing JP, Chilibeck PD (2003) The effects of eccentric and concentric training at different velocities on muscle hypertrophy. Eur J Appl Physiol 89(6):578–586
    Fry AC (2004) The role of resistance exercise intensity on muscle fibre adaptations. Sports Med 34(10):663–679
    Gao ZH, Seeling JM, Hill V, Yochum A, Virshup DM (2002) Casein kinase I phosphorylates and destabilizes the beta-catenin degradation complex. PNAS USA 99(3):1182–1187
    Glass DJ (2003) Molecular mechanisms modulating muscle mass. Trends Mol Med 9(8):344–350
    Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Intl J Biochem Cell Biol 37(10):1974–1984
    Hesketh JE, Whitelaw PF (1992) The role of cellular oncogenes in myogenesis and muscle cell hypertrophy. Intl J Biochem 24(2):193–203
    Izumo S, Nadal-Ginard B, Mahdavi V (1988) Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. PNAS USA 85(2):339–343
    Kawano Y, Kypta R (2003) Secreted antagonists of the WNT signalling pathway. J Cell Sci 116(Pt 13):2627–2634
    Lamas L, Aoki MS, Ugrinowitsch C, Campos GE, Regazzini M, Moriscot AS, Tricoli V (2010) Expression of genes related to muscle plasticity after strength and power training regimens. Scand J Med Sci Sports 20(2):216–225
    Leger B, Cartoni R, Praz M, Lamon S, Deriaz O, Crettenand A, Gobelet C, Rohmer P, Konzelmann M, Luthi F, Russell AP (2006) Akt signalling through GSK-3Beta, mTOR and FOXO1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol 576(Pt 3):923–933
    Li L, Yuan H, Weaver CD, Mao J, Farr GH 3rd, Sussman DJ, Jonkers J, Kimelman D, Wu D (1999) Axin and FRAT-1 interact with DVL and GSK, bridging DVL to GSK in WNT-mediated regulation of LEF-1. EMBO J 18(15):4233–4240
    Logan CY, Nusse R (2004) The WNT signaling pathway in development and disease. Ann Rev Cell Dev Biol 20:781–810
    Malisoux L, Francaux M, Nielens H, Theisen D (2006) Stretch-shortening cycle exercises: an effective training paradigm to enhance power output of human single muscle fibers. J Appl Physiol 100(3):771–779
    Montagne J (2000) Genetic and molecular mechanisms of cell size control. Mol Cell Biol Res Commun 4(4):195–202
    Moon RT, Brown JD, Torres M (1997) WNTs modulate cell fate and behavior during vertebrate development. Trends Genet 13(4):157–162
    Morgan JE, Partridge TA (2003) Muscle satellite cells. Intl J Biochem Cell Biol 35(8):1151–1156
    Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW (1997) Activation of Beta-catenin-TCF signaling in colon cancer by mutations in Beta-catenin or APC. Science (New York, NY) 275(5307):1787–1790
    Moss BM, Refsnes PE, Abildgaard A, Nicolaysen K, Jensen J (1997) Effects of maximal effort strength training with different loads on dynamic strength, cross-sectional area, load-power and load-velocity relationships. Eur J Appl Physiol Occup Physiol 75(3):193–199
    Novak A, Dedhar S (1999) Signaling through Beta-catenin and LEF/TCF. Cell Mol Life Sci 56(5–6):523–537
    O’Neil TK, Duffy LR, Frey JW, Hornberger TA (2009) The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol 587(Pt 14):3691–3701. doi: 10.1113/jphysiol.2009.173609
    Peifer M, Polakis P (2000) WNT signaling in oncogenesis and embryogenesis–a look outside the nucleus. Science (New York, NY) 287(5458):1606–1609
    Piedra ME, Delgado MD, Ros MA, Leon J (2002) C-myc overexpression increases cell size and impairs cartilage differentiation during chick limb development. Cell Growth Differ 13(4):185–193
    Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC (2000) An LDL-receptor-related protein mediates WNTsignalling in mice. Nature 407(6803):535–538
    Ratamess NA, Alvar BA, Evetoch TK, Housh TJ, Kibler WB, Kraemer WJ, Triplett NT (2009) American college of sports medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 41(3):687–708
    Shapiro L (1997) The multi-talented Beta-catenin makes its first appearance. Structure 5(10):1265–1268
    Shepstone TN, Tang JE, Dallaire S, Schuenke MD, Staron RS, Phillips SM (2005) Short-term high- vs. low-velocity isokinetic lengthening training results in greater hypertrophy of the elbow flexors in young men. J Appl Physiol 98(5):1768–1776
    Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, Ben-Ze’ev A (1999) The cyclin D1 gene is a target of the Beta-catenin/LEF-1 pathway. PNAS USA 96(10):5522–5527
    Sorensen B, Jones JF, Vernon SD, Rajeevan MS (2009) Transcriptional control of complement activation in an exercise model of chronic fatigue syndrome. Mol Med 15(1–2):34–42
    Staron RS, Malicky ES, Leonardi MJ, Falkel JE, Hagerman FC, Dudley GA (1990) Muscle hypertrophy and fast fiber type conversions in heavy resistance-trained women. Eur J Appl Physiol Occup Physiol 60(1):71–79
    Steelman CA, Recknor JC, Nettleton D, Reecy JM (2006) Transcriptional profiling of myostatin-knockout mice implicates WNT signaling in postnatal skeletal muscle growth and hypertrophy. Faseb J 20(3):580–582
    Tago K, Nakamura T, Nishita M, Hyodo J, Nagai S, Murata Y, Adachi S, Ohwada S, Morishita Y, Shibuya H, Akiyama T (2000) Inhibition of WNT signaling by ICAT, a novel beta-catenin-interacting protein. Genes Dev 14(14):1741–1749
    Toigo M, Boutellier U (2006) New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur J Appl Physiol 97(6):643–663
    Ugrinowitsch C, Fellingham GW, Ricard MD (2004) Limitations of ordinary least squares models in analyzing repeated measures data. Med Sci Sports Exerc 36(12):2144–2148
    Welle S, Bhatt K, Pinkert CA, Tawil R, Thornton CA (2007) Muscle growth after postdevelopmental myostatin gene knockout. Am J Physiol 292(4):E985–E991
    Williams (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. New Eng J Med 351(10):1030–1031