Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

On the Hartman-Grobman theorem with parameters (2010)

  • Authors:
  • USP affiliated authors: RODRIGUES, HILDEBRANDO MUNHOZ - ICMC
  • USP Schools: ICMC
  • DOI: 10.1007/s10884-010-9160-7
  • Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS; EQUAÇÕES DIFERENCIAIS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10884-010-9160-7 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10884-010-9160-7 (Fonte: Unpaywall API)

    Título do periódico: Journal of Dynamics and Differential Equations

    ISSN: 1040-7294,1572-9222



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Journal of Dynamics and Differential Equations

    ISSN: 1040-7294

    Citescore - 2017: 1.03

    SJR - 2017: 1.208

    SNIP - 2017: 0.963


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC2177553-10PROD-2177553
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      RODRIGUES, Hildebrando Munhoz; SOLA-MORALES, Joan. On the Hartman-Grobman theorem with parameters. Journal of Dynamics and Differential Equations, The Netherlands, Springer, v. 22, n. 3, p. 473-489, 2010. Disponível em: < http://dx.doi.org/10.1007/s10884-010-9160-7 > DOI: 10.1007/s10884-010-9160-7.
    • APA

      Rodrigues, H. M., & Sola-Morales, J. (2010). On the Hartman-Grobman theorem with parameters. Journal of Dynamics and Differential Equations, 22( 3), 473-489. doi:10.1007/s10884-010-9160-7
    • NLM

      Rodrigues HM, Sola-Morales J. On the Hartman-Grobman theorem with parameters [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 3): 473-489.Available from: http://dx.doi.org/10.1007/s10884-010-9160-7
    • Vancouver

      Rodrigues HM, Sola-Morales J. On the Hartman-Grobman theorem with parameters [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 3): 473-489.Available from: http://dx.doi.org/10.1007/s10884-010-9160-7

    Referências citadas na obra
    Bates P.W., Lu K.: A Hartman–Grobman theorem for the Cahn–Hilliard and phase-field equations. J. Dyn. Differ. Equ. 6(1), 101–145 (1994)
    Ceron, S., Lopes, O.: α-contractions and attractors for dissipative semilinear hyperbolic equations and systems. Ann. Math. Pura Appl. 160 (4), 193–206 (1991)
    Coppel W.A.: Dichotomies in Stability Theory. Springer-Verlag, Berlin (1978)
    Hale J.K.: Odinary Differential Equations, 2nd edn. Robert E. Krieger Publ Co., Inc, Malabar, FL (1980)
    Hartman P.: Ordinary Differential Equations, 2nd edn. Birkhäuser, Basel (1982)
    Holmes R.B.: A formula for the spectral radius of an operator. Am. Math. Monthly 75, 163–166 (1968)
    Holmes P., Marsden J.: A partial differential equation with infinitely many periodic orbits: Chaotic oscillations of a forced beam. Arch. Rational Mech. Anal. 76(2), 135–165 (1981)
    Kato T.: Perturbation Theory for Linear Operators, 2nd edn. Springer Verlag, Berlin (1976)
    Lu K.: A Hartman-Grobman theorem for scalar reaction-diffusion equations. J. Differ. Equ. 93(2), 364–394 (1991)
    Patcheu S.K.: On a global solution and asymptotic behaviour for the generalized damped extensible beam equation. J. Differ. Equ. 135, 299–314 (1997)
    Pugh C.C.: On a theorem of P. Hartman. Am. J. Math. 91(2), 363–367 (1969)
    Rodrigues H.M., Ruas Filho J.G.: The Hartman-Grobman theorem for reversible systems on banach spaces. J. Nonlinear Sci. 7, 271–280 (1997)
    Rodrigues H.M., Solà-Morales J.: Linearization of Class C 1 for contractions on banach spaces. J. Differ. Equ. 201(2), 351–382 (2004)
    Rodrigues H.M., Solà-Morales J.: Smooth linearization for a saddle on banach spaces. J. Dyn. Differ. Equ. 16(3), 767–793 (2004)
    Rodrigues H.M., Solà-Morales J.: An invertible contraction that is not $${\mathcal{C}^1}$$ -linearizable. C. R. Math. Acad. Sci. Paris 340(11), 847–850 (2005)
    Rodrigues H.M., Solà-Morales J.: Invertible contractions and asymptotically stable ODE’s that are not $${{\mathcal C}^1}$$ -linearizable. J. Dyn. Differ. Equ. 18(4), 961–974 (2006)
    Rodrigues H.M., Silveira M.: Properties of bounded solutions of linear and nonlinear evolution equations: homoclinics of a beam equation. J. Differ. Equ. 70, 403–440 (1987)