Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Rheumatic Fever and Rheumatic Heart Disease: Cellular Mechanisms Leading Autoimmune Reactivity and Disease (2010)

  • Authors:
  • USP affiliated authors: KALIL FILHO, JORGE ELIAS - FM
  • USP Schools: FM
  • DOI: 10.1007/s10875-009-9332-6
  • Subjects: FEBRE REUMÁTICA; CARDIOPATIAS; AUTOIMUNIDADE; CITOCINAS; PROTEÍNAS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10875-009-9332-6 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Journal of Clinical Immunology

    ISSN: 0271-9142

    Citescore - 2017: 3.27

    SJR - 2017: 1.611

    SNIP - 2017: 1.055


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FM2186487-10BCSEP 117 2010
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      GUILHERME, Luiza; KALIL, Jorge. Rheumatic Fever and Rheumatic Heart Disease: Cellular Mechanisms Leading Autoimmune Reactivity and Disease. Journal of Clinical Immunology, New York, v. 30, n. 1, p. 17-30, 2010. Disponível em: < http://dx.doi.org/10.1007/s10875-009-9332-6 > DOI: 10.1007/s10875-009-9332-6.
    • APA

      Guilherme, L., & Kalil, J. (2010). Rheumatic Fever and Rheumatic Heart Disease: Cellular Mechanisms Leading Autoimmune Reactivity and Disease. Journal of Clinical Immunology, 30( 1), 17-30. doi:10.1007/s10875-009-9332-6
    • NLM

      Guilherme L, Kalil J. Rheumatic Fever and Rheumatic Heart Disease: Cellular Mechanisms Leading Autoimmune Reactivity and Disease [Internet]. Journal of Clinical Immunology. 2010 ; 30( 1): 17-30.Available from: http://dx.doi.org/10.1007/s10875-009-9332-6
    • Vancouver

      Guilherme L, Kalil J. Rheumatic Fever and Rheumatic Heart Disease: Cellular Mechanisms Leading Autoimmune Reactivity and Disease [Internet]. Journal of Clinical Immunology. 2010 ; 30( 1): 17-30.Available from: http://dx.doi.org/10.1007/s10875-009-9332-6

    Referências citadas na obra
    Dajani AS, Ayoub E, Bierman FZ, et al. Guidelines for the diagnosis of rheumatic fever: Jones criteria, 1992 uptade. JAMA. 1992;268:2069–73.
    Carapetis JR, Mulholland SAC, EK WM. The global burden of group A streptococcal disease. Lancet Infect Dis. 2005;5:685–94.
    Guilherme L, Ramasawmy R, Kalil J. Rheumatic fever and rheumatic heart disease: genetics and pathogenesis. Scand J Immunol. 2007;66:199–207.
    Stanevicha V, Eglite J, Sochnevs A, Gardovska D, Zavadska D, Shantere R. HLA class II associations with rheumatic heart disease among clinically homogeneous patients in children in Latvia. Arthritis Res Ther. 2003;5:R340–6.
    Hernandez-Pacheco G, Flores-Dominguez C, et al. Tumor necrosis factor-alpha promoter polymorphisms in Mexican patients with rheumatic heart disease. J Autoimmun. 2003;21:59–63.
    Ramasawmy R, Fae KC, Spina G, et al. Association of polymorphisms within the promoter region of the tumor necrosis factor-alpha with clinical outcomes of rheumatic fever. Mol Immunol. 2007;44:1873–8.
    Jack DL, Klein NJ, Turner MW. Mannose-binding lectin: targeting the microbial world for complement attack and opsonophagocytosis. Immunol Rev. 2001;180:86–99.
    Messias Reason IJ, Schafranski MD, Jensenius JC, Steffensen R. The association between mannose-binding lectin gene polymorphism and rheumatic heart disease. Hum Immunol. 2006;67:991–8.
    Schafranski MD, Pereira-Ferrari L, Scherner D, Messias-Reason IJ. High-producing MBL2 genotypes increase the risk of acute and chronic carditis in patients with history of rheumatic fever. Mol Immunol. 2008;45(14):3827–31.
    Ramasawmy R, Spina G, Faé KC, Perreira AC et al. Association of mannosebinding lectin gene polymorphism but not of mannose-binding serine protease-2 with chronic severe aortic regurgitation of rheumatic etiology. Clinical and Vaccine Immunology. 2008;15(6):932-6.
    Cunningham MW. Pathogenesis of group A streptococcal infections. Clin Microbiol Rev. 2000;13:470–511.
    Guilherme L, Kalil J, Cunningham MW. Molecular mimicry in the autoimmune pathogenesis of rheumatic heart disease. Autoimmunity. 2006;39(1):31–9.
    Lehmann PV, Forsthuber T, Miller A, Sercarz EE. Spreading of T cell autoimmunity to cryptic determinants of an autoantigen. Nature. 1992;359:155–7.
    Raizada V, Williams RC Jr, Chopra P, et al. Tissue distribution of lymphocytes in rheumatic heart valves as defined by monoclonal anti-T cell antibodies. Am J Med. 1983;74:90–6.
    Kemeny E, Grieve T, Marcus R, Sareli P, Zabriskie JB. Identification of mononuclear cells and T cell subsets in rheumatic valvulitis. Clin Immunol Immunopathol. 1989;52:225–37.
    Guilherme L, Weidebach W, Kiss MH, Snitcowsky R, Kalil J. Association of human leukocyte class II antigens with rheumatic fever or rheumatic heart disease in a Brazilian population. Circulation. 1991;83:1995–8.
    Galvin JE, Hemric ME, Ward K, Cunnimgham M. Cytotoxic monoclonal antibody from rheumatic carditis reacts with human endothelium: implicxations in rheumatic heart disease. J Clin Invest. 2000;106:217–24.
    Roberts S, Kosanke S, Dun TS, et al. Pathogenic mechanism in rheumatic carditis: focus on valvular endothelium. J Infect Diseases. 2001;183:507–11.
    Fae KC, da Silva DD, Oshiro SE, et al. Mimicry in recognition of cardiac myosin peptides by heart-intralesional T cell clones from rheumatic heart disease. J Immunol. 2006;176:5662–70.
    Guilherme L, Oshiro SE, Fae KC, Cunha-Neto E, et al. T cell reactivity against streptococcal antigens in the periphery mirrors reactivity of heart-infiltrating T lymphocytes in rheumatic heart disease patients. Infect Immun. 2001;69:5345–51.
    Yoshinaga M, Figueiroa F, Wahid MR, Marcus RH, Suh E, Zabriskie JB. Antigenic specificity of lymphocytes isolated from valvular specimens of rheumatic fever patients. J Autoimmun. 1995;8:601–13.
    Cunningham MW. T cell mimicry in inflammatory heart disease. Mol Immunol. 2004;40:1121–7.
    Ellis NM, Li Y, Hildebrand W, Fischetti VA, Cunningham MW. T cell mimicry and epitope specificity of cross-reactive T cell clones from rheumatic heart disease. J Immunol. 2005;175:5448–56.
    Lievremont JP, Rizzuto R, Hendershot L, BiP MJ. A major chaperone protein of the endoplasmic reticulum lumen, plays a direct and important role in the storage of the rapidly exchanging pool of Ca2+. J Biol Chem. 1997;272:30873–9.
    Little E, Ramakrishnan M, Roy B, Gazita G, Lee AS. The glucose-regulated proteins (GRP78 and GRP94): functions, gene regulation, and applications. Crit Rev Eukaryot Gene Expr. 1994;4:1–18.
    Nigam SK, Goldberg AL, Ho S, Rohde MF, Bush KT, Sherman M. A set of endoplasmic reticulum proteins possessing properties of molecular chaperones includes Ca(2+)-binding proteins and members of the thioredoxin superfamily. J Biol Chem. 1994;269:1744–9.
    Guilherme L, Dulphy N, Douay C, Coelho V, Cunha-Neto E, et al. Molecular evidence for antigen-driven immune responses in cardiac lesions of Rheumatic Heart Disease patients. Int Immunol. 2000;12:1063–74.
    Faé K, Kalil J, Toubert A, Guilherme L. Heart-infiltrating T cell clones from a rheumatic heart disease patient display a common TCR usage and a degenerate antigen recognition pattern. Mol Immunol. 2004;40(14–15):1129–35.
    Guilherme L, Faé K, Oshiro SE, Kalil J. (2005) Molecular pathogenesis of rheumatic fever and rheumatic heart disease. Exp Rev Mol Immunol (7):1–15. On line access. doi: 10.1017/S146239940501015X
    Guilherme L, Cury P, Demarchi LM, et al. Rheumatic heart disease: proinflammatory cytokines play a role in the progression and maintenance of valvular lesions. Am J Pathol. 2004;165:1583–91.
    Ivanov II, Mckenzie BS, Zhou L, Tadokoro CE, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121–33.
    Annunziato F, Cosmi L, Santarlasci V, Maggi L, et al. Phenotypic and funcational features of human Th17 cells. J Exp Med. 2007;204(8):1849–61.