Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field (2011)

  • Authors:
  • USP affiliated authors: PICCIONE, PAOLO - IME
  • USP Schools: IME
  • DOI: 10.1007/s00209-009-0617-5
  • Subjects: GEODÉSIA GEOMÉTRICA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/s00209-009-0617-5 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green
    Versões disponíveis em Acesso Aberto do: 10.1007/s00209-009-0617-5 (Fonte: Unpaywall API)

    Título do periódico: Mathematische Zeitschrift

    ISSN: 0025-5874,1432-1823

    • Melhor URL em Acesso Aberto:


    • Outras alternativas de URLs em Acesso Aberto:
    Informações sobre o Citescore
  • Título: Mathematische Zeitschrift

    ISSN: 0025-5874

    Citescore - 2017: 0.85

    SJR - 2017: 1.635

    SNIP - 2017: 1.112


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      FLORES, Jose Luis; JAVALOYES, Miguel Angel; PICCIONE, Paolo. Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field. Mathematische Zeitschrift, NewvYork, v. 267, n. 1-2, p. 221-233, 2011. DOI: 10.1007/s00209-009-0617-5.
    • APA

      Flores, J. L., Javaloyes, M. A., & Piccione, P. (2011). Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field. Mathematische Zeitschrift, 267( 1-2), 221-233. doi:10.1007/s00209-009-0617-5
    • NLM

      Flores JL, Javaloyes MA, Piccione P. Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field. Mathematische Zeitschrift. 2011 ; 267( 1-2): 221-233.
    • Vancouver

      Flores JL, Javaloyes MA, Piccione P. Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field. Mathematische Zeitschrift. 2011 ; 267( 1-2): 221-233.

    Referências citadas na obra
    Adams, S., Stuck, G.: The isometry group of a compact Lorentz manifold. I, II. Invent. Math. 129(2), 239–261, 263–287 (1997)
    Baker A.: Matrix Groups. An Introduction to Lie Group Theory. Springer Undergraduate Mathematics Series. Springer, London (2002)
    Beem J.K., Ehrlich P.E., Easley K.: Global Lorentzian Geometry. Marcel Dekker, New York (1996)
    Beem J.K., Ehrlich P.E., Markvorsen S.: Timelike isometries and Killing fields. Geom. Dedic. 26, 247–258 (1988)
    Biliotti L., Mercuri F., Piccione P.: On a Gromoll–Meyer type theorem in globally hyperbolic stationary spacetimes. Comm. Anal. Geom. 16(2), 333–393 (2008)
    Bredon G.: Introduction to Compact Transformation Groups. Pure and Applied Mathematics, vol. 46. Academic Press, New York (1972)
    Cannas da Silva A.: Lectures on Symplectic Geometry. Lecture Notes in Mathematics, vol. 1764. Springer, Berlin (2001)
    Caponio E., Masiello A., Piccione P.: Some global properties of static spacetimes. Math. Z. 244(3), 457–468 (2003)
    D’Ambra G.: Isometry groups of Lorentz manifolds. Invent. Math. 92, 555–565 (1988)
    Fintushel R.: Circle actions on simply connected 4-manifolds. Trans. Am. Math. Soc. 230, 147–171 (1977)
    Fintushel R.: Classification of circle actions on 4-manifolds. Trans. Am. Math. Soc. 242, 377–390 (1978)
    Galloway G.: Closed timelike geodesics. Trans. Am. Math. Soc. 285, 379–384 (1984)
    Galloway G.: Compact Lorentzian manifolds without closed non spacelike geodesics. Proc. Am. Math. Soc. 98, 119–123 (1986)
    Giannoni F., Piccione P., Sampalmieri R.: On the geodesical connectedness for a class of semi- Riemannian manifolds. J. Math. Anal. Appl. 252(1), 444–476 (2000)
    Guediri M.: On the existence of closed timelike geodesics in compact spacetimes. Math. Z. 239, 277–291 (2002)
    Guediri M.: On the existence of closed timelike geodesics in compact spacetimes. II. Math. Z. 244, 577–585 (2003)
    Guediri M.: On the nonexistence of closed timelike geodesics in flat Lorentz 2-step nilmanifolds. Trans. Am. Math. Soc. 355, 775–786 (2003)
    Guediri M.: A new class of compact spacetimes without closed causal geodesics. Geom. Dedic. 126, 177–185 (2007)
    Guediri M.: Closed timelike geodesics in compact spacetimes. Trans. Am. Math. Soc. 359(6), 2663–2673 (2007)
    Knapp A.W.: Lie Groups Beyond an Introduction. Progress in Mathematics, vol. 140. Birkhõuser, Boston (1996)
    Kobayashi S., Nomizu K.: Foundations of Differential Geometry, vol. I. Wiley Classics Library. A Wiley-Interscience Publication. Wiley, New York (1996)
    Kobayashi, S.: Transformation Groups in Differential geometry, Reprint of the 1972 edition. Classics in Mathematics. Springer, Berlin (1995)
    Kollár J.: Circle actions on simply connected 5-manifolds. Topology 45, 643–671 (2006)
    Marzantowicz W.: A G-Lusternik–Schnirelman category of space with an action of a compact Lie group. Topology 28, 403–412 (1989)
    Masiello A.: On the existence of a closed geodesic in stationary Lorentzian manifolds. J. Differ. Equ. 104, 48–59 (1993)
    Molino P.: Riemannian Foliations. Progress in Mathematics, vol. 73. Birkhõuser, Boston (1988)
    O’Neill B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York (1983)
    Piccione, P., Zeghib, A.: On the isometry group of a compact stationary Lorentzian manifold. Preprint (2009)
    Romero A., Sánchez M.: Completeness of compact Lorentz manifolds admitting a timelike conformal Killing vector field. Proc. Am. Math. Soc. 123(9), 2831–2833 (1995)
    Sachs R., Wu H.: General Relativity for Mathematicians. Graduate Texts in Mathematics, vol. 48. Springer, New York (1977)
    Sánchez M.: Structure of Lorentzian tori with a Killing vector field. Trans. Am. Math. Soc. 349(3), 1063–1080 (1997)
    Sánchez, M.: Lorentzian manifolds admitting a Killing vector field. In: Proceedings of the Second World Congress of Nonlinear Analysts, Part 1 (Athens, 1996). Nonlinear Anal. 30 (1), 643–654 (1997)
    Sánchez M.: On causality and closed geodesics of compact Lorentzian manifolds and static spacetimes. Differ. Geom. Appl. 24(1), 21–32 (2006)
    Scott P.: The geometries of 3-manifolds. Bull. Lond. Math. Soc. 15(5), 401–487 (1983)
    Seifert H.: Topologie dreidimensionaler gefaserte Räume. Acta Math. 60, 148–238 (1932)
    Tipler F.J.: Existence of closed timelike geodesics in Lorentz spaces. Proc. Am. Math. Soc. 76, 145–147 (1979)
    Zeghib, A.: Sur les espaces-temps homogènes, The Epstein Birthday Schrift, pp. 551–576 (electronic). Geom. Topol. Monogr., 1, Geom. Topol. Publ. Coventry (1998)