Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress (2012)

  • Authors:
  • USP affiliated authors: MARTINS, RODRIGO ALVARO BRANDÃO LOPES - ICB
  • USP Schools: ICB
  • DOI: 10.1007/s10103-011-0955-5
  • Subjects: FARMACOLOGIA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10103-011-0955-5 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10103-011-0955-5 (Fonte: Unpaywall API)

    Título do periódico: Lasers in Medical Science

    ISSN: 0268-8921,1435-604X



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Lasers in Medical Science

    ISSN: 0268-8921

    Citescore - 2017: 2.14

    SJR - 2017: 0.713

    SNIP - 2017: 1.067


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICB12100077767PC ICB BMF SEP 2012
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      DE MARCHI, Thiago; LEAL JUNIOR, Ernesto Cesar Pinto; BORTOLI, Celiana; et al. Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers in Medical Science, London, v. 27, n. 1, p. 231-236, 2012. Disponível em: < http://dx.doi.org/10.1007/s10103-011-0955-5 > DOI: 10.1007/s10103-011-0955-5.
    • APA

      De Marchi, T., Leal Junior, E. C. P., Bortoli, C., Tomazoni, S. S., Lopes-Martins, R. Á. B., & Salvador, M. (2012). Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers in Medical Science, 27( 1), 231-236. doi:10.1007/s10103-011-0955-5
    • NLM

      De Marchi T, Leal Junior ECP, Bortoli C, Tomazoni SS, Lopes-Martins RÁB, Salvador M. Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress [Internet]. Lasers in Medical Science. 2012 ; 27( 1): 231-236.Available from: http://dx.doi.org/10.1007/s10103-011-0955-5
    • Vancouver

      De Marchi T, Leal Junior ECP, Bortoli C, Tomazoni SS, Lopes-Martins RÁB, Salvador M. Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress [Internet]. Lasers in Medical Science. 2012 ; 27( 1): 231-236.Available from: http://dx.doi.org/10.1007/s10103-011-0955-5

    Referências citadas na obra
    Almar M, Villa JG (2002) Urinary levels of 8-hydroxydeoxyguanosine as a marker of oxidative damage in road cycling. Free Radic Res 36:247–253
    Halliwell B, Gutteridge JC (2000) Free Radicals in Biology and Medicine. New York, Oxford
    Reid MB, Haack KE, Franchek KM, Valberg PA, Kobzik L, West MS (1992) Reactive oxygen in skeletal muscle. I. Intracellular oxidant kinetics and fatigue in vitro. J Appl Physiol 73:1797–1804
    Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332
    Ivey FM, Roth SM, Ferrell RE, Tracy BL, Lemmer JT, Hurlbut DE, Martel GF, Siegel EL, Fozard JL, Jeffrey Metter E, Fleg JL, Hurley BF (2000) Effects of age, gender, and myostatin genotype on the hypertrophic response to heavy resistance strength training. J Gerontol A Biol Sci Med Sci 55:641–648
    Lamb GD, Stephenson DG, Bangsbo J, Juel C (2006) Point: Counterpoint: Lactic acid accumulation is an advantage/disadvantage during muscle activity. J Appl Physiol 100:1410–1414
    Leal Junior EC, Lopes-Martins RA, Dalan F, Ferrari M, Sbabo FM, Generosi RA, Baroni BM, Penna SC, Iversen VV, Bjordal JM (2008) Effect of 655-nm low-level laser therapy on exercise-induced skeletal muscle fatigue in humans. Photomed Laser Surg 26:419–424
    Leal Junior EC, Lopes-Martins RA, Baroni BM, De Marchi T, Rossi RP, Grosselli D, Generosi RA, de Godoi V, Basso M, Mancalossi JL, Bjordal JM (2009) Comparison between single-diode low-level laser therapy (LLLT) and LED multi-diode (cluster) therapy (LEDT) applications before high-intensity exercise. Photomed Laser Surg 27:617–623
    Leal Junior EC, Lopes-Martins RA, Baroni BM, De Marchi T, Taufer D, Manfro DS, Rech M, Danna V, Grosselli D, Generosi RA, Marcos RL, Ramos L, Bjordal JM (2009) Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes. Lasers Med Sci 24:857–863
    Wasserman K, Hansen JE, Sue DY, Whipp BJ (1987) Principles of Exercise Testing and Interpretation. Lea & Febiger, Philadelphia
    Wills ED (1996) Mechanism of lipid peroxide formation in animal tissues. Biochem J 99:667–676
    Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478
    Bannister JV, Calabrese L (1987) Assays for superoxide dismutase. Methods Biochem Anal 32:279–312
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126
    Huang YY, Chen AC, Carroll JD, Hamblin MR (2009) Biphasic dose response in low-level light therapy. Dose Response 7:358–383
    Leal Junior EC, Lopes-Martins RA, Frigo L, De Marchi T, Rossi RP, de Godoi V, Tomazoni SS, da Silva DP, Basso M, Lotti Filho P, Corsetti FV, Iversen VV, Bjordal JM (2010) Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to post-exercise recovery. J Orthop Sports Phys Ther 40:524–532
    Enwemeka CS (2009) Intricacies of dose in laser phototherapy for tissue repair and pain relief. Photomed Laser Surg 27:387–393
    International Association of Athletics Federations – IAAF (2010) Available at: http://www.iaaf.org/statistics/toplists/index.html . Accessed: August 20
    Leal Junior EC, Lopes-Martins RA, Rossi RP, De Marchi T, Baroni BM, de Godoi V, Marcos RL, Ramos L, Bjordal JM (2009) Effect of cluster multi-diode light emitting diode therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers Surg Med 41:572–577
    Alessio HM (1993) Exercise-induce oxidative stress. Med Sci Sports Exerc 25:218–224
    Reid MB (2008) Free Radicals and muscle fatigue: Of ROS, canaries, and the IOC. Free Radic Biol Med 44:169–179
    Fillipin LI, Mauriz JL, Vedovelli K, Moreira AJ, Zettler CG, Lech O, Marroni NP, González-Gallego J (2005) Low-level laser therapy (LLLT) prevents oxidative stress and reduces fibroses en rat traumatized Achilles tendon. Lasers Surg Med 37:293–300
    Liu XG, Zhou YJ, Liu TC, Yuan JQ (2009) Effects of low-level laser irradiation on rat skeletal muscle injury after eccentric exercise. Photomed Laser Surg 27:863–869
    Lubart R, Eichler M, Lavi R, Friedman H, Shainberg A (2005) Low-energy laser irradiation promotes cellular redox activity. Photomed Laser Surg 23:3–9
    Ji LL (1995) Exercise and oxidative stress: role of the cellular antioxidant system. Exerc Sport Sci Rev 23:135–166
    Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1276
    Tullberg M, Alstergren PJ, Ernberg MM (2003) Effects of low-power laser exposure on masseter muscle pain and microcirculation. Pain 105:89–96
    Xu X, Zhao X, Liu TC, Pan H (2008) Low-intensity laser irradiation improves the mitochondrial dysfunction of C2C12 induced by electrical stimulation. Photomed Laser Surg 26:197–202