Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Septin C-terminal domain interactions: implications for filament stability and assembly (2012)

  • Authors:
  • USP affiliated authors: ARAUJO, ANA PAULA ULIAN DE - IFSC ; GARRATT, RICHARD CHARLES - IFSC
  • USP Schools: IFSC; IFSC
  • DOI: 10.1007/s12013-011-9307-0
  • Subjects: PROTEÍNAS (ESTUDO); BIOLOGIA MOLECULAR; CRISTALOGRAFIA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s12013-011-9307-0 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s12013-011-9307-0 (Fonte: Unpaywall API)

    Título do periódico: Cell Biochemistry and Biophysics

    ISSN: 1085-9195,1559-0283



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Cell Biochemistry and Biophysics

    ISSN: 1085-9195

    Citescore - 2017: 1.55

    SJR - 2017: 0.581

    SNIP - 2017: 0.56


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    IFSC89019376PROD019376
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MARQUES, Ivo de Almeida; VALADARES, Napoleão Fonseca; GARCIA, Wanius; et al. Septin C-terminal domain interactions: implications for filament stability and assembly. Cell Biochemistry and Biophysics, Totowa, Humana Press, v. 62, n. 2, p. 317-328, 2012. Disponível em: < http://dx.doi.org/10.1007/s12013-011-9307-0 > DOI: 10.1007/s12013-011-9307-0.
    • APA

      Marques, I. de A., Valadares, N. F., Garcia, W., Damalio, J. C. P., Macedo, J. N. A., Araújo, A. P. U. de, et al. (2012). Septin C-terminal domain interactions: implications for filament stability and assembly. Cell Biochemistry and Biophysics, 62( 2), 317-328. doi:10.1007/s12013-011-9307-0
    • NLM

      Marques I de A, Valadares NF, Garcia W, Damalio JCP, Macedo JNA, Araújo APU de, Botello CA, Andreu JM, Garratt RC. Septin C-terminal domain interactions: implications for filament stability and assembly [Internet]. Cell Biochemistry and Biophysics. 2012 ; 62( 2): 317-328.Available from: http://dx.doi.org/10.1007/s12013-011-9307-0
    • Vancouver

      Marques I de A, Valadares NF, Garcia W, Damalio JCP, Macedo JNA, Araújo APU de, Botello CA, Andreu JM, Garratt RC. Septin C-terminal domain interactions: implications for filament stability and assembly [Internet]. Cell Biochemistry and Biophysics. 2012 ; 62( 2): 317-328.Available from: http://dx.doi.org/10.1007/s12013-011-9307-0

    Referências citadas na obra
    Hartwell, L. H. (1971). Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Experimental Cell Research, 69, 265–276.
    Cao, L., Ding, X., Yu, W., Yang, X., Shen, S., & Yu, L. (2007). Phylogenetic and evolutionary analysis of the septin protein family in metazoan. FEBS Letters, 581, 5526–5532.
    Pan, F., Malmberg, R. L., & Momany, M. (2007). Analysis of septins across kingdoms reveals orthology and new motifs. BMC Evolutionary Biology, 7, 103.
    Kartmann, B., & Roth, D. (2001). Novel roles for mammalian septins: From vesicle trafficking to oncogenesis. Journal of Cell Science, 114, 839–844.
    Hsu, S. C., Hazuka, C. D., Roth, R., Foletti, D. L., Heuser, J., & Scheller, R. H. (1998). Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron, 20, 1111–1122.
    Shcheprova, Z., Baldi, S., Frei, S. B., Gonnet, G., & Barral, Y. (2008). A mechanism for asymmetric segregation of age during yeast budding. Nature, 454, 728–734.
    Spiliotis, E. T., Kinoshita, M., & Nelson, W. J. (2005). A mitotic septin scaffold required for Mammalian chromosome congression and segregation. Science, 307, 1781–1785.
    Tooley, A. J., Gilden, J., Jacobelli, J., Beemiller, P., Trimble, W. S., Kinoshita, M., et al. (2009). Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility. Nature Cell Biology, 11, 17–26.
    Weirich, C. S., Erzberger, J. P., & Barral, Y. (2008). The septin family of GTPases: Architecture and dynamics. Nature Reviews Molecular Cell Biology, 9, 478–489.
    Ihara, M., Tomimoto, H., Kitayama, H., Morioka, Y., Akigunchi, I., Shibasaki, H., et al. (2003). Association of the cytoskeletal GTP-binding protein Sept4/H5 with cytoplasmatic inclusions found in Parkinson’s disease and others synucleinopathies. The Journal of Biological Chemistry, 278, 24012–24095.
    Hall, P. A., & Russell, S. E. (2004). The pathobiology of the septin gene family. The Journal of Pathology, 204, 489–505.
    Mostowy, S., Nam Tham, T., Danckaert, A., Guadagnini, S., Boisson-Dupuis, S., Pizarro-Cerdá, J., et al. (2009). Septins regulate bacterial entry into host cells. PLoS One, 4, e4196.
    Tanaka, M., Tanaka, T., Kijima, H., Itoh, J., Matsuda, T., Hori, S., et al. (2001). Characterization of tissue- and cell-type-specific expression of a novel human septin family gene, Bradeion. Biochemical and Biophysical Research Communications, 286, 547–553.
    Garcia, W., de Araújo, A. P., Neto, Mde. O., Ballestero, M. R., Polikarpov, I., Tanaka, M., et al. (2006). Dissection of a human septin: definition and characterization of distinct domains within human SEPT4. Biochemistry, 45, 13918–13931.
    Kinoshita, M. (2003). Assembly of mammalian septins. The Journal of Biochemistry, 134, 491–496.
    Kinoshita, M. (2003). The septins. Genome Biology, 4, 236.
    Field, C. M., al-Awar, O., Rosenblatt, J., Wong, M. L., Alberts, B., & Mitchison, T. J. (1996). A purified Drosophila septin complex forms filaments and exhibits GTPase activity. The Journal of Cell Biology, 133, 605–616.
    Sirajuddin, M., Farkasovsky, M., Hauer, F., Kühlmann, D., Macara, I. G., Weyand, M., et al. (2007). Structural insight into filament formation by mammalian septins. Nature, 449, 311–315.
    Sheffield, P. J., Oliver, C. J., Kremer, B. E., Sheng, S., Shao, Z., & Macara, I. G. (2003). Borg/septin interactions and the assembly of mammalian septin heterodimers, trimers, and filaments. The Journal of Biological Chemistry, 278, 3483–3488.
    Nagata, K., Asano, T., Nozawa, Y., & Inagaki, M. (2004). Biochemical and cell biological analyses of a mammalian septin complex, Sept7/9b/11. The Journal of Biological Chemistry, 279, 55895–55904.
    Fujishima, K., Kiyonari, H., Kurisu, J., Hirano, T., & Kengaku, M. (2007). Targeted disruption of Sept3, a heteromeric assembly partner of Sept5 and Sept7 in axons, has no effect on developing CNS neurons. Journal of Neurochemistry, 102, 77–92.
    Zhang, J., Kong, C., Xie, H., McPherson, P. S., Grinstein, S., & Trimble, W. S. (1999). Phosphatidylinositol polyphosphate binding to the mammalian septin H5 is modulated by GTP. Current Biology, 9, 1458–1467.
    Hillebrand, S., Garcia, W., Delmar Cantú, M., de Araújo, A. P., Tanaka, M., Tanaka, T., et al. (2005). In vitro monitoring of GTPase activity and enzyme kinetics studies using capillary electrophoresis. Analytical and Bioanalytical Chemistry, 383, 92–97.
    Nagaraj, S., Rajendran, A., Jackson, C. E., & Longtine, M. S. (2008). Role of nucleotide binding in septin–septin interactions and septin localization in Saccharomyces cerevisiae. Molecular and Cellular Biology, 28, 5120–5137.
    Sirajuddin, M., Farkasovsky, M., Zent, E., & Wittinghofer, A. (2009). GTP-induced conformational changes in septins and implications for function. Proceedings of the National Academy of Sciences of the United States of America, 106, 16592–16597.
    Lupas, A., Van Dyke, M., & Stock, J. (1991). Predicting coiled-coils from protein sequences. Science, 252, 1162–1164.
    Wolf, E., Kim, P. S., & Berger, B. (1997). MultiCoil: A program for predicting two- and three-stranded coiled-coils. Protein Science, 6, 1179–1189.
    Barth, P., Schoeffler, A., & Alber, T. (2008). Targeting metastable coiled-coil domains by computational design. Journal of the American Chemical Society, 130, 12038–12044.
    Shinoda, T., Ito, H., Sudo, K., Iwamoto, I., Morishita, R., & Nagata, K. (2010). Septin 14 is involved in cortical neuronal migration via interaction with septin 4. Molecular Biology of the Cell, 21, 1324–1334.
    Low, C., & Macara, I. G. (2006). Structural analysis of septin 2, 6, and 7 complexes. The Journal of Biological Chemistry, 281, 30697–30706.
    Bertin, A., McMurray, M. A., Grob, P., Park, S. S., Garcia, G., 3rd, Patanwala, I., et al. (2008). Saccharomyces cerevisiae septins: supramolecular organization of heterooligomers and the mechanism of filament assembly. Proceedings of the National Academy of Sciences of the United States of America, 105, 8274–8279.
    Sanger, F., Nicklen, S., & Coulson, R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74, 5463–5467.
    Gill, S. C., & von Hippel, P. H. (1989). Calculation of proteins extinction coefficients from amino acid sequence data. Analytical Biochemistry, 182, 319–326.
    Sreerama, N., & Woody, R. W. (2000). Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Analytical Biochemistry, 287, 252–260.
    Valadares, N. F., Polikarpov, I., & Garratt, R. C. (2008). Ligand induced interaction of thyroid hormone receptor beta with its coregulators. The Journal of Steroid Biochemistry and Molecular Biology, 112, 205–212.
    Myszka, D. G. (1999). Improving biosensor analysis. Journal of Molecular Recognition, 12, 279–284.
    Schuck, P., Perugini, M. A., Gonzales, N. R., Howlett, G. J., & Schubert, D. (2002). Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and applications to model systems. Biophysical Journal, 82, 1096–1111.
    Laue, T. M., Shah, B. D., Ridgeway, T. M., & Pelletier, S. L. (1992). Computer-aided interpretation of analytical sedimentation data for proteins. In S. E. Harding, H. C. Horton, & A. J. Rowe (Eds.), Analytical ultracentrifugation in biochemistry and polymer science (pp. 90–125). London, UK: Royal Society of Chemistry.
    Cole, J. L. (2004). Analysis of heterogeneous interactions. Methods in Enzymology, 384, 212–232.
    Cooper, T. M., & Woody, R. W. (1990). The effect of conformation on the CD of interacting helices: a theoretical study of tropomyosin. Biopolymers, 30, 657–676.
    Rich, R. L., & Myszka, D. G. (2007). Survey of the year 2006 commercial biosensor literature. Journal of Molecular Recognition, 20, 300–366.
    John, C. M., Hite, R. K., Weirich, C. S., Fitzgerald, D. J., Jawhari, H., Faty, M., et al. (2007). The Caenorhabditis elegans septin complex is nonpolar. The EMBO Journal, 26, 3296–3307.
    Nakahira, M., Macedo, J. N. A., Seraphim, T. V., Cavalcante, N., Souza, T. A. C. B., Damalio, J. C. P., et al. (2010). A draft of the human septin interactome. PLoS One, 5, e13799.
    Bertin, A., McMurray, M. A., Thai, L., Garcia, G., I. I. I., Votin, V., Grob, P., et al. (2010). Phosphatidylinositol-4, 5-bisphosphate promotes budding yeast septin filament assembly and organization. The Journal of Biological Chemistry, 404, 711–731.
    Zhu, M., Wang, F., Yan, F., Yao, P. Y., Du, J., Gao, X., et al. (2008). Septin 7 interacts with centromere-associated protein E and is required for its kinetochore localization. The Journal of Biological Chemistry, 283, 18916–18925.