Ver registro no DEDALUS
Exportar registro bibliográfico



NFAT1 transcription factor is central in the regulation of tissue microenvironment for tumor metastasis (2011)

  • Authors:
  • USP affiliated authors: CHAMMAS, ROGER - FM
  • USP Schools: FM
  • DOI: 10.1007/s00262-010-0964-4
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00262-010-0964-4 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Cancer Immunology, Immunotherapy

    ISSN: 0340-7004

    Citescore - 2017: 4.54

    SJR - 2017: 1.899

    SNIP - 2017: 0.99

  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FM2276338-10BCSEP 404 2011
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      WERNECK, Miriam B. F.; VIEIRA-DE-ABREU, Adriana; CHAMMAS, Roger; VIOLA, João P. B. NFAT1 transcription factor is central in the regulation of tissue microenvironment for tumor metastasis. Cancer Immunology Immunotherapy, Berlin, v. 60, p. 537-546, 2011. Disponível em: < > DOI: 10.1007/s00262-010-0964-4.
    • APA

      Werneck, M. B. F., Vieira-de-Abreu, A., Chammas, R., & Viola, J. P. B. (2011). NFAT1 transcription factor is central in the regulation of tissue microenvironment for tumor metastasis. Cancer Immunology Immunotherapy, 60, 537-546. doi:10.1007/s00262-010-0964-4
    • NLM

      Werneck MBF, Vieira-de-Abreu A, Chammas R, Viola JPB. NFAT1 transcription factor is central in the regulation of tissue microenvironment for tumor metastasis [Internet]. Cancer Immunology Immunotherapy. 2011 ; 60 537-546.Available from:
    • Vancouver

      Werneck MBF, Vieira-de-Abreu A, Chammas R, Viola JPB. NFAT1 transcription factor is central in the regulation of tissue microenvironment for tumor metastasis [Internet]. Cancer Immunology Immunotherapy. 2011 ; 60 537-546.Available from:

    Referências citadas na obra
    Balkwill F, Mantovani A (2010) Cancer and inflammation: implications for pharmacology and therapeutics. Clin Pharmacol Ther 87(4):401–406
    de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6(1):24–37
    Li J, Goldstein I, Glickman-Nir E, Jiang H, Chess L (2001) Induction of TCR Vbeta-specific CD8 + CTLs by TCR Vbeta-derived peptides bound to HLA-E. J Immunol 167(7):3800–3808
    Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51
    Baksh S, Widlund HR, Frazer-Abel AA, Du J, Fosmire S, Fisher DE, De Caprio JA, Modiano JF, Burakoff SJ (2002) NFATc2-mediated repression of cyclin-dependent kinase 4 expression. Mol Cell 10(5):1071–1081
    Caetano MS, Vieira-de-Abreu A, Teixeira LK, Werneck MB, Barcinski MA, Viola JP (2002) NFATC2 transcription factor regulates cell cycle progression during lymphocyte activation: evidence of its involvement in the control of cyclin gene expression. FASEB J 16(14):1940–1942
    Carvalho LD, Teixeira LK, Carrossini N, Caldeira AT, Ansel KM, Rao A, Viola JP (2007) The NFAT1 transcription factor is a repressor of cyclin A2 gene expression. Cell Cycle 6(14):1789–1795
    Viola JP, Carvalho LD, Fonseca BP, Teixeira LK (2005) NFAT transcription factors: from cell cycle to tumor development. Braz J Med Biol Res 38(3):335–344
    Robbs BK, Cruz AL, Werneck MB, Mognol GP, Viola JP (2008) Dual roles for NFAT transcription factor genes as oncogenes and tumor suppressors. Mol Cell Biol 28(23):7168–7181
    Buchholz M, Schatz A, Wagner M, Michl P, Linhart T, Adler G, Gress TM, Ellenrieder V (2006) Overexpression of c-myc in pancreatic cancer caused by ectopic activation of NFATc1 and the Ca2 +/calcineurin signaling pathway. EMBO J 25(15):3714–3724
    Mancini M, Toker A (2009) NFAT proteins: emerging roles in cancer progression. Nat Rev Cancer 9(11):810–820
    Marafioti T, Pozzobon M, Hansmann ML, Ventura R, Pileri SA, Roberton H, Gesk S, Gaulard P, Barth TF, Du MQ, Leoncini L, Moller P, Natkunam Y, Siebert R, Mason DY (2005) The NFATc1 transcription factor is widely expressed in white cells and translocates from the cytoplasm to the nucleus in a subset of human lymphomas. Br J Haematol 128(3):333–342
    Medyouf H, Alcalde H, Berthier C, Guillemin MC, dos Santos NR, Janin A, Decaudin D, de The H, Ghysdael J (2007) Targeting calcineurin activation as a therapeutic strategy for T-cell acute lymphoblastic leukemia. Nat Med 13 (6):736–741
    Neal JW, Clipstone NA (2002) Calcineurin mediates the calcium-dependent inhibition of adipocyte differentiation in 3T3–L1 cells. J Biol Chem 277(51):49776–49781
    Pham LV, Tamayo AT, Yoshimura LC, Lin-Lee YC, Ford RJ (2005) Constitutive NF-kappaB and NFAT activation in aggressive B-cell lymphomas synergistically activates the CD154 gene and maintains lymphoma cell survival. Blood 106(12):3940–3947
    Kakuta S, Tagawa Y, Shibata S, Nanno M, Iwakura Y (2002) Inhibition of B16 melanoma experimental metastasis by interferon-gamma through direct inhibition of cell proliferation and activation of antitumour host mechanisms. Immunology 105(1):92–100
    Rodrigues EG, Garofalo AS, Travassos LR (2002) Endogenous accumulation of IFN-gamma in IFN-gamma-R(−/−) mice increases resistance to B16F10-Nex2 murine melanoma: a model for direct IFN-gamma anti-tumor cytotoxicity in vitro and in vivo. Cytokines Cell Mol Ther 7(3):107–116
    Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410(6832):1107–1111
    Kobayashi M, Kobayashi H, Pollard RB, Suzuki F (1998) A pathogenic role of Th2 cells and their cytokine products on the pulmonary metastasis of murine B16 melanoma. J Immunol 160(12):5869–5873
    Lynch DH, Namen AE, Miller RE (1991) In vivo evaluation of the effects of interleukins 2, 4 and 7 on enhancing the immunotherapeutic efficacy of anti-tumor cytotoxic T lymphocytes. Eur J Immunol 21(12):2977–2985
    Dobrzanski MJ, Reome JB, Dutton RW (2001) Role of effector cell-derived IL-4, IL-5, and perforin in early and late stages of type 2 CD8 effector cell-mediated tumor rejection. J Immunol 167(1):424–434
    Kiani A, Garcia-Cozar FJ, Habermann I, Laforsch S, Aebischer T, Ehninger G, Rao A (2001) Regulation of interferon-gamma gene expression by nuclear factor of activated T cells. Blood 98(5):1480–1488
    Rao A, Luo C, Hogan PG (1997) Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 15:707–747
    Teixeira LK, Fonseca BP, Vieira-de-Abreu A, Barboza BA, Robbs BK, Bozza PT, Viola JP (2005) IFN-gamma production by CD8 + T cells depends on NFAT1 transcription factor and regulates Th differentiation. J Immunol 175(9):5931–5939
    Fonseca BP, Olsen PC, Coelho LP, Ferreira TP, Souza HS, Martins MA, Viola JP (2009) NFAT1 transcription factor regulates pulmonary allergic inflammation and airway responsiveness. Am J Respir Cell Mol Biol 40(1):66–75
    Kiani A, Viola JP, Lichtman AH, Rao A (1997) Down-regulation of IL-4 gene transcription and control of Th2 cell differentiation by a mechanism involving NFAT1. Immunity 7(6):849–860
    Viola JP, Kiani A, Bozza PT, Rao A (1998) Regulation of allergic inflammation and eosinophil recruitment in mice lacking the transcription factor NFAT1: role of interleukin-4 (IL-4) and IL-5. Blood 91(7):2223–2230
    Xanthoudakis S, Viola JP, Shaw KT, Luo C, Wallace JD, Bozza PT, Luk DC, Curran T, Rao A (1996) An enhanced immune response in mice lacking the transcription factor NFAT1. Science 272(5263):892–895
    Loh C, Shaw KT, Carew J, Viola JP, Luo C, Perrino BA, Rao A (1996) Calcineurin binds the transcription factor NFAT1 and reversibly regulates its activity. J Biol Chem 271(18):10884–10891
    Adler H, Beland JL, Kozlow W, Del-Pan NC, Kobzik L, Rimm IJ (1998) A role for transforming growth factor-beta1 in the increased pneumonitis in murine allogeneic bone marrow transplant recipients with graft-versus-host disease after pulmonary herpes simplex virus type 1 infection. Blood 92(7):2581–2589
    Spangrude GJ (1994) Biological and clinical aspects of hematopoietic stem cells. Annu Rev Med 45:93–104
    Nilsson LM, Nilsson-Ohman J, Zetterqvist AV, Gomez MF (2008) Nuclear factor of activated T-cells transcription factors in the vasculature: the good guys or the bad guys? Curr Opin Lipidol 19(5):483–490
    Lima LG, Chammas R, Monteiro RQ, Moreira ME, Barcinski MA (2009) Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner. Cancer Lett 283(2):168–175
    Muller MR, Rao A (2010) NFAT, immunity and cancer: a transcription factor comes of age. Nat Rev Immunol 10(9):645–656
    Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360
    Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC, Bates DL, Guo L, Han A, Ziegler SF, Mathis D, Benoist C, Chen L, Rao A (2006) FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126(2):375–387
    Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M, Whiteside TL (2010) Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS One 5(7):e11469
    Stover DG, Bierie B, Moses HL (2007) A delicate balance: TGF-beta and the tumor microenvironment. J Cell Biochem 101(4):851–861
    Maxeiner JH, Karwot R, Sauer K, Scholtes P, Boross I, Koslowski M, Tureci O, Wiewrodt R, Neurath MF, Lehr HA, Finotto S (2009) A key regulatory role of the transcription factor NFATc2 in bronchial adenocarcinoma via CD8 + T lymphocytes. Cancer Res 69(7):3069–3076
    Quezada SA, Peggs KS, Curran MA, Allison JP (2006) CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J Clin Invest 116(7):1935–1945