Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Pharmacokinetics of cyclophosphamide enantiomers in patients with breat cancer (2011)

  • Authors:
  • USP affiliated authors: ANDRADE, JURANDYR MOREIRA DE - FMRP ; COELHO, EDUARDO BARBOSA - FMRP ; LANCHOTE, VERA LUCIA - FCFRP
  • USP Schools: FMRP; FMRP; FCFRP
  • DOI: 10.1007/s00280-011-1554-7
  • Subjects: NEOPLASIAS MAMÁRIAS; FARMACOTERAPIA; FARMACOCINÉTICA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00280-011-1554-7 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Cancer Chemotherapy and Pharmacology

    ISSN: 0344-5704

    Citescore - 2017: 2.91

    SJR - 2017: 1.147

    SNIP - 2017: 0.899


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FMRP2277609pcd 2277609 estantes deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      FERNANDES, Bruno José Dumêt; SILVA, Carolina de Miranda; ANDRADE, Jurandyr Moreira de; et al. Pharmacokinetics of cyclophosphamide enantiomers in patients with breat cancer. Cancer Chemotherapy and Pharmacology, Heildelberg, v. 68, n. 4, p. 897-904, 2011. Disponível em: < http://dx.doi.org/10.1007/s00280-011-1554-7 > DOI: 10.1007/s00280-011-1554-7.
    • APA

      Fernandes, B. J. D., Silva, C. de M., Andrade, J. M. de, Matthes, Â. do C. S., Coelho, E. B., & Lanchote, V. L. (2011). Pharmacokinetics of cyclophosphamide enantiomers in patients with breat cancer. Cancer Chemotherapy and Pharmacology, 68( 4), 897-904. doi:10.1007/s00280-011-1554-7
    • NLM

      Fernandes BJD, Silva C de M, Andrade JM de, Matthes  do CS, Coelho EB, Lanchote VL. Pharmacokinetics of cyclophosphamide enantiomers in patients with breat cancer [Internet]. Cancer Chemotherapy and Pharmacology. 2011 ; 68( 4): 897-904.Available from: http://dx.doi.org/10.1007/s00280-011-1554-7
    • Vancouver

      Fernandes BJD, Silva C de M, Andrade JM de, Matthes  do CS, Coelho EB, Lanchote VL. Pharmacokinetics of cyclophosphamide enantiomers in patients with breat cancer [Internet]. Cancer Chemotherapy and Pharmacology. 2011 ; 68( 4): 897-904.Available from: http://dx.doi.org/10.1007/s00280-011-1554-7

    Referências citadas na obra
    Veronesi U, Boyle P, Goldhirsch A, Orecchio R, Viale G (2005) Breast cancer. Lancet 365:1727–1741
    WHO (2009) Cancer. World Health Organization Media Centre. http://www.who.int/mediacentre/factsheets/fs297/en/index.html . Acessed 19 Nov 2010
    DeMichele A, Aplenc R, Botbyl J et al (2005) Drug-metabolizing enzyme polymorphisms predict clinical outcome in a node-positive breast cancer cohort. J Clin Oncol 23:5552–5559
    Cox PJ, Farmer PB, Jarman M, Jones M (1976) Observations on the differential metabolism and biological activity of the optical isomers of cyclophosphamide. Biochem Pharmacol 25:993–996
    Kleinrok Z, Chmielewska B, Czuczwar JS, Kozicka M, Rajtar G, Jarzabek G, Sawiniec Z (1986) Comparison of pharmacological properties of cyclophosphamide and its enantiomers. Arch Immunol Ther Exp 34:263–273
    Paprocka M, Kusnierczyk H, Budzynski W, Rak J, Radzikowiski C (1986) Comparative studies on biological activity of (+)-R and (−)-S enantiomers of cyclophosphamide and ifosfamide. I. Antitumour effect of cyclophosphamide and ifosfamide enantiomers. Arch Immunol Ther Exp 34:275–284
    Kusnierczyk H, Radzikowski C, Paprocka M, Budzyński W, Rak J, Kinas R, Misiura K, Stec W (1986) Antitumor activity of optical isomers of cyclophosphamide, ifosfamide and trofosfamide as compared to clinically used racemates. J Immunopharmacol 8:455–480
    de Jonge ME, Huitema ADR, Rodenhuis S, Beijnen JH (2005) Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet 44:1135–1164
    Pinto N, Luderman SM, Dolan ME (2009) Pharmacogenetic studies related to cyclophosphamide-based therapy. Pharmacogenomics 10:1897–1903
    Xie H-J, Yasar U, Lundgren S, Griskevicius L, Terelius Y, Hassan M, Rane A (2003) Role of polymorphic human CYP2B6 in cyclophosphamide bioactivation. Pharmacogenomics J 3:53–61
    Ariyoshi N, Miyazaki M, Toide K, Sawamura Y, Kamataki T (2001) A single nucleotide polymorphism of CYP2B6 found in Japanese enhances catalytic activity by autoactivation. Biochem Biophys Res Commun 281:1256–1260
    Lang T, Klein K, Fischer J et al (2001) Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics 11:399–415
    Nakajima M, Komagata S, Fujiki Y et al (2007) Genetic polymorphisms affect the pharmacokinetics/pharmacodynamics of cyclophosphamide in Japanese cancer patients. Pharmacogenet Genomics 17:431–445
    Xie H-J, Griskevicius L, Stahle L et al (2006) Pharmacogenetics of cyclophosphamide in patients with hematological malignancies. Eur J Pharm Sci 27:54–61
    Griskevicius L, Yasar U, Sandberg M et al (2003) Bioactivation of cyclophosphamide: the role of polymorphic CYP2C enzymes. Eur J Clin Pharmacol 59:103–109
    Ekhart C, Doodeman VD, Rodenhuis S, Smits PHM, Beijnen JH, Huitema ADR (2008) Influence of polymorphisms of drug metabolizing enzymes (CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1) on the pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide. Pharmacogenet Genomics 18:515–523
    Williams ML, Wainer IW, Embree L, Barnett M, Granvil CP, Ducharme MP (1999) Enantioselective induction of cyclophosphamide metabolism by phenytoin. Chirality 11:569–574
    Williams ML, Wainer IW, Granvil CP, Gehrcke B, Bernstein ML, Ducharme MP (1999) Pharmacokinetics of (R) and (S)-cyclophosphamide and their dechloroethylated metabolites in cancer patients. Chirality 11:301–308
    Corlett SA, Chrystyn H (1996) High-performance liquid chromatographic determination of the enantiomers of cyclophosphamide in serum. J Chromatogr B Biomed Appl 682:337–342
    Holm KA, Kindberg CG, Stobaugh JF, Slavik M, Riley CM (1990) Stereoselective pharmacokinetics and metabolism of the enantiomers of cyclophosphamide. Preliminary results in humans and rabbits. Biochem Pharmacol 39:1375–1384
    Silva CM, Fernandes BJD, Donadi EA, Silva LM, Coelho EB, Dantas M, Marques MP, Lanchote VL (2009) Influence of glomerular filtration rate on the pharmacokinetics of cyclophosphamide enantiomers in patients with lupus nephritis. J Clin Pharmacol 49:965–972
    Silva CM, Fernandes BJD, Pereira MPM, Silva LM, Donadi EA, Matthes ACS, Andrade JM, Lanchote VL (2009) Determination of cyclophosphamide enantiomers in plasma by LC-MS/MS: application to pharmacokinetics in breast cancer and lupus nephritis patients. Chirality 21:383–389
    Jabor VAP, Coelho EB, Santos NAG, Bonato PS, Lanchote VL (2005) A highly sensitive LC-MS-MS assay for analysis of midazolam and its major metabolite in human plasma: applications to drug metabolism. J Chromatogr B Analyt Technol Biomed Life Sci 822:27–32
    Schellens JHM, Van der Wart JHF, Danhof M, Van Der Velde EA, Breimer DD (1988) Relationship between the metabolism of antipyrine, hexobarbitone and theophylline in man as assessed by a ‘cocktail’ approach. Br J Clin Pharmacol 26:373–384
    Morais SMF, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Golstein JA (1994) The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 269:15419–15422
    Vianna-Jorge R, Perini JA, Rondinelli E, Suarez-Kurtz G (2004) CYP2C9 genotypes and the pharmacokinetics of tenoxicam in Brazilians. Clin Pharmacol Ther 76:18–26
    Kubota T, Chiba K, Ishizaki T (1996) Genotyping of S-mephenytoin 4-hydroxylation in an extended Japanese population. Clin Pharmacol Ther 60:661–666
    Sim SC, Risinger C, Dahl M-L, Aklilu E, Christensen M, Bertilsson L, Ingelman-Sundberg M (2006) A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 79:103–113
    Jacob RM, Johnstone EC, Neville MJ, Walton RT (2004) Identification of CYP2B6 sequence variants by use of multiplex PCR with allele-specific genotyping. Clin Chem 50:1372–1377
    Gilbert CJ, Petros WP, Vredenburgh J, Hussein A, Ross M, Rubin P, Fehdrau R, Cavanaugh C, Berry D, McKinstry C, Peters WP (1998) Pharmacokinetic interaction between ondansetron and cyclophosphamide during high-dose chemotherapy for breast cancer. Cancer Chemother Pharmacol 42:497–503
    Jarman M, Milsted RAV, Smyth JF, Kinas RW, Pankiewicz K, Stec WJ (1979) Comparative metabolism of 2-[Bis(2–chloroethyl) amino] tetrahydro-2H–1, 3, 2-oxazaphosphorine-2-oxide (Cyclophosphamide) and its enantiomers in humans. Cancer Res 39:2762–2767
    Streetman DS, Bertino JS Jr, Nafziger AN (2000) Phenotyping of drug metabolizing enzymes in adults: a review of in vivo cytochrome P450 phenotyping probes. Pharmacogenetics 10:187–216
    Wilkinson GR (1996) Cytochrome P503A (CYP3A) metabolism: prediction of in vivo activity in humana. J Pharmacokinet Biopharm 24:475–490
    Chen M, Ma L, Drusano GL, Bertino JS, Nafziger AN (2006) Sex differences in CYP3A activity using intravenous and oral midazolam. Clin Pharmacol Ther 80:531–538
    Kharasch ED, Walker A, Isoherranen N, Hoffer C, Sheffels P, Thummel K, Whittington D, Ensign D (2007) Influence of CYP3A5 genotype on the pharmacokinetics and pharmacodynamics of the cytochrome P4503A probes alfentanil and midazolam. Clin Pharmacol Ther 82:410–426