Ver registro no DEDALUS
Exportar registro bibliográfico

Adaptação de viés indutivo de algoritmos de agrupamento de fluxos de dados (2012)

  • Authors:
  • USP affiliated authors: ALBERTINI, MARCELO KEESE - ICMC
  • USP Schools: ICMC
  • Sigla do Departamento: SCC
  • Subjects: APRENDIZADO COMPUTACIONAL; SISTEMAS DINÂMICOS
  • Keywords: Agrupamento de dados; Aprendizado de máquina; Data clustering; Data streams; Fluxos de dados; Machine learning
  • Language: Português
  • Abstract: Diversas áreas de pesquisa são dedicadas à  compreensão de fenômenos que exigem a coleta ininterrupta de sequências de amostras, denominadas fluxos de dados. Esses fenômenos frequentemente apresentam comportamento variável e são estudados por meio de indução não supervisionada baseada em agrupamento de dados. Atualmente, o processo de agrupamento tem exibido sérias limitações em sua aplicação a fluxos de dados, devido às exigências impostas pelas variações comportamentais e pelo modo de coleta de dados. Embora tem-se desenvolvido algoritmos eficientes para agrupar fluxos de dados, há a necessidade de estudos sobre a influência de variações comportamentais nos parâmetros de algoritmos (e.g., taxas de aprendizado e limiares de proximidade), as quais interferem diretamente na compreensão de fenômenos. Essa lacuna motivou esta tese, cujo objetivo foi a proposta de uma abordagem para a adaptação do viés indutivo de algoritmos de agrupamento de fluxos de dados de acordo com variações comportamentais dos fenômenos em estudo. Para cumprir esse objetivo projetou-se: i) uma abordagem baseada em uma nova arquitetura de rede neural artificial que permite avaliação de comportamento de fenômenos por meio da estimação de cadeias de Markov e entropia de Shannon; ii) uma abordagem para adaptar parâmetros de algoritmos de agrupamento tradicional de acordo com variações comportamentais em blocos sequenciais de dados; e iii) uma abordagem para adaptar parâmetros de agrupamento de acordo com acontínua avaliação da estabilidade de dados. Adicionalmente, apresenta-se nesta tese uma taxonomia de técnicas de detecção de variação comportamental de fenômenos e uma formalização para o problema de agrupamento de fluxos de dados
  • Imprenta:
  • Data da defesa: 11.04.2012
  • Acesso online ao documento

    Acesso à fonte or search this record in

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ALBERTINI, Marcelo Keese; MELLO, Rodrigo Fernandes de. Adaptação de viés indutivo de algoritmos de agrupamento de fluxos de dados. 2012.Universidade de São Paulo, São Carlos, 2012. Disponível em: < http://www.teses.usp.br/teses/disponiveis/55/55134/tde-12062012-085839/ >.
    • APA

      Albertini, M. K., & Mello, R. F. de. (2012). Adaptação de viés indutivo de algoritmos de agrupamento de fluxos de dados. Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55134/tde-12062012-085839/
    • NLM

      Albertini MK, Mello RF de. Adaptação de viés indutivo de algoritmos de agrupamento de fluxos de dados [Internet]. 2012 ;Available from: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-12062012-085839/
    • Vancouver

      Albertini MK, Mello RF de. Adaptação de viés indutivo de algoritmos de agrupamento de fluxos de dados [Internet]. 2012 ;Available from: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-12062012-085839/

    Últimas obras dos mesmos autores vinculados com a USP cadastradas na BDPI:

    Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2019