Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Ecosystem-scale compensation points of formic and acetic acid in the central Amazon (2011)

  • Authors:
  • USP affiliated authors: NETTO, PAULO EDUARDO ARTAXO - IF
  • USP Schools: IF
  • DOI: 10.5194/bg-8-3709-2011
  • Subjects: ECOSSISTEMAS; AEROSSOL; POLUIÇÃO ATMOSFÉRICA; AMAZÔNIA
  • Language: Inglês
  • Abstract: (CONTINUAÇÃO) These observations are consistent with a switch between a biomass burning dominated source in the dry season (FA/AA < 1.0) to a vegetation dominated source in the wet season (FA/AA > 1.0). Our observations provide the first ecosystem-scale evidence of bidirectional FA and AA exchange between a forest canopy and the atmosphere controlled by ambient concentrations and ecosystem scale compensation points (estimated to be 1.3 nmol mol−1: FA, and 2.1 nmol mol−1: AA). These results suggest the need for a fundamental change in how future biosphere-atmosphere exchange models should treat FA and AA with a focus on factors that influence net exchange rates (ambient concentrations and ecosystem compensation points) rather than treating emissions and deposition separately.Organic acids, central to terrestrial carbon metabolism and atmospheric photochemistry, are ubiquitous in the troposphere in the gas, particle, and aqueous phases. As the dominant organic acids in the atmosphere, formic acid (FA, HCOOH) and acetic acid (AA, CH3COOH) control precipitation acidity in remote regions and may represent a critical link between the terrestrial carbon and water cycles by acting as key intermediates in plant carbon and energy metabolism and aerosol-cloud-precipitation interactions. However, our understanding of the exchange of these acids between terrestrial ecosystems and the atmosphere is limited by a lack of field observations, the existence of biogenic and anthropogenic primary and secondary sources whose relative importance is unclear, and the fact that vegetation can act as both a source and a sink. Here, we first present data obtained from the tropical rainforest mesocosm at Biosphere 2 which isolates primary vegetation sources. Strong light and temperature dependent emissions enriched in FA relative to AA were simultaneously observed from individual branches (FA/AA = 2.1 ± 0.6) and mesocosm ambient air (FA/AA = 1.4 ± 0.3). We also present long-term observations of vertical concentration gradients of FA and AA within and above a primary rainforest canopy in the central Amazon during the 2010 dry and 2011 wet seasons. We observed a seasonal switch from net ecosystem-scale deposition during the dry season to net emissions during the wet season. This switch was associated with reduced ambient concentrations in the wet season (FA < 1.3 nmol mol−1, AA < 2.0 nmol mol−1) relative to the dry season (FA up to 3.3 nmol mol−1, AA up to 6.0 nmol mol−1), and a simultaneous increase in the FA/AA ambient concentration ratios from 0.3–0.8 in the dry season to 1.0–2.1 in the wet season. (CONTINUA)
  • Imprenta:
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.5194/bg-8-3709-2011 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      JARDINE, K; YAÑEZ SERRANO, A; ARNETH, A; et al. Ecosystem-scale compensation points of formic and acetic acid in the central Amazon. Biogeosciences Discussion, Munich, European Geosciences Union, v. 8, n. 5, p. 9283-9309, 2011. DOI: 10.5194/bg-8-3709-2011.
    • APA

      Jardine, K., Yañez Serrano, A., Arneth, A., Abrell, L., Jardine, A., Artaxo Netto, P. E., et al. (2011). Ecosystem-scale compensation points of formic and acetic acid in the central Amazon. Biogeosciences Discussion, 8( 5), 9283-9309. doi:10.5194/bg-8-3709-2011
    • NLM

      Jardine K, Yañez Serrano A, Arneth A, Abrell L, Jardine A, Artaxo Netto PE, Alves E, Kesselmeier J, Taylor T, Saleska S, Huxman T. Ecosystem-scale compensation points of formic and acetic acid in the central Amazon. Biogeosciences Discussion. 2011 ; 8( 5): 9283-9309.
    • Vancouver

      Jardine K, Yañez Serrano A, Arneth A, Abrell L, Jardine A, Artaxo Netto PE, Alves E, Kesselmeier J, Taylor T, Saleska S, Huxman T. Ecosystem-scale compensation points of formic and acetic acid in the central Amazon. Biogeosciences Discussion. 2011 ; 8( 5): 9283-9309.

    Referências citadas na obra
    Amato, P., Parazols, M., Sancelme, M., Mailhot, G., Laj, P., and Delort, A. M.: An important oceanic source of micro-organisms from cloud water at the Puy de Dôme (France), Atmospheric Environment, 41, citeulike-article-id:6775351, 8253–8263, 2007.
    Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, 2001.
    Andreae, M. O., Talbot, R. W., Andreae, T. W., and Harriss, R. C.: Formic and Acetic-Acid over the Central Amazon Region, Brazil 1. Dry Season, J. Geophys. Res.-Atmos., 93, 1616–1624, 1988.
    Araujo, A. C., Nobre, A. D., Kruijt, B., Elbers, J. A., Dallarosa, R., Stefani, P., von Randow, C., Manzi, A. O., Culf, A. D., Gash, J. H. C., Valentini, R., and Kabat, P.: Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: The Manaus LBA site, J. Geophys. Res.-Atmos., 107, 8090, https://doi.org/10.1029/2001JD000676, 2002.
    Bode, K., Helas, G., and Kesselmeier, J.: Biogenic contribution to atmospheric organic acids, in: Biogenic Volatile Organic Compounds in the Atmosphere, edited by: Helas, G., Slanina, Steinbrecher R, SPB Academic Publishing, Amsterdam, 1997.
    Chebbi, A. and Carlier, P.: Carboxylic acids in the troposphere, occurrence, sources, and sinks: A review, Atmos. Environ., 30, 4233–4249, 1996.
    Christensen, K. E. and MacKenzie, R. E.: Mitochondrial one-carbon metabolism is adapted to the specific needs of yeast, plants and mammals, Bioessays, 28, 595–605, https://doi.org/10.1002/Bies.20420, 2006.
    Cossins, E. A. and Chen, L. F.: Folates and one-carbon metabolism in plants and fungi, Phytochemistry, 45, 437–452, 1997.
    Fall, R. and Monson, R. K.: Isoprene Emission Rate and Intercellular Isoprene Concentration as Influenced by Stomatal Distribution and Conductance, Plant Physiology, 100, 987–992, 1992.
    Fall, R. and Benson, A. A.: Leaf methanol – The simplest natural product from plants, Trends Plant Sci, 1, 296–301, 1996.
    Fearnside, P. M., Righi, C. A., Graca, P. M. L. D., Cerri, C. C., and Feigl, B. J.: Biomass burning in Brazil's Amazonian "arc of deforestation": Burning efficiency and charcoal formation in a fire after mechanized clearing at Feliz Natal, Mato Grosso, Forest Ecology and Management, 258, 2535–2546, https://doi.org/10.1016/j.foreco.2009.09.010, 2009.
    Gabriel, R., Schafer, L., Gerlach, C., Rausch, T., and Kesselmeier, J.: Factors controlling the emissions of volatile organic acids from leaves of Quercus ilex L. (Holm oak), Atmos. Environ., 33, 1347–1355, 1999.
    Ganzeveld, L., Eerdekens, G., Feig, G., Fischer, H., Harder, H., Königstedt, R., Kubistin, D., Martinez, M., Meixner, F. X., Scheeren, H. A., Sinha, V., Taraborrelli, D., Williams, J., Vilà-Guerau de Arellano, J., and Lelieveld, J.: Surface and boundary layer exchanges of volatile organic compounds, nitrogen oxides and ozone during the GABRIEL campaign, Atmos. Chem. Phys., 8, 6223–6243, https://doi.org/10.5194/acp-8-6223-2008, 2008.
    Goode, J. G., Yokelson, R. J., Ward, D. E., Susott, R. A., Babbitt, R. E., Davies, M. A., and Hao, W. M.: Measurements of excess O-3, CO2, CO, CH4, C2H4, C2H2, HCN, NO, NH3, HCOOH, CH3COOH, HCHO, and CH3OH in 1997 Alaskan biomass burning plumes by airborne fourier transform infrared spectroscopy (AFTIR), J. Geophys. Res.-Atmos., 105, 22147–22166, 2000.
    Grodzinski, B.: Study of Formate Production and Oxidation in Leaf Peroxisomes during Photo-Respiration, Plant Physiology, 63, 289–293, 1979.
    Grosjean, D.: Formic-Acid and Acetic-Acid - Emissions, Atmospheric Formation and Dry Deposition at 2 Southern California Locations, Atmos. Environ. a-Gen, 26, 3279–3286, 1992.
    Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
    Hanson, A. D. and Roje, S.: One-carbon metabolism in higher plants, Annu. Rev. Plant Phys., 52, 119–137, 2001.
    Harley, P., Greenberg, J., Niinemets, Ü., and Guenther, A.: Environmental controls over methanol emission from leaves, Biogeosciences, 4, 1083–1099, https://doi.org/10.5194/bg-4-1083-2007, 2007.
    Harrington, R. F., Gertler, A. W., Grosjean, D., and Amar, P.: Formic-Acid and Acetic-Acid in the Western Sierra-Nevada, California, Atmos. Environ. a-Gen, 27, 1843–1849, 1993.
    Huve, K., Christ, M. M., Kleist, E., Uerlings, R., Niinemets, U., Walter, A., and Wildt, J.: Simultaneous growth and emission measurements demonstrate an interactive control of methanol release by leaf expansion and stomata, J. Exp. Bot., 58, 1783–1793, https://doi.org/10.1093/Jxb/Erm038, 2007.
    Jabrin, S., Ravanel, S., Gambonnet, B., Douce, R., and Rebeille, F.: One-carbon metabolism in plant, Regulation of tetrahydrofolate synthesis during germination and seedling development, Plant Physiology, 131, 1431–1439, https://doi.org/10.1104/Pp.016915, 2003.
    Jardine, K., Harley, P., Karl, T., Guenther, A., Lerdau, M., and Mak, J. E.: Plant physiological and environmental controls over the exchange of acetaldehyde between forest canopies and the atmosphere, Biogeosciences, 5, 1559–1572, https://doi.org/10.5194/bg-5-1559-2008, 2008.
    Jardine, K. J., Henderson, W. M., Huxman, T. E., and Abrell, L.: Dynamic Solution Injection: a new method for preparing pptv-ppbv standard atmospheres of volatile organic compounds, Atmos. Meas. Tech., 3, 1569–1576, http://dx.doi.org/10.5194/amt-3-1569-2010https://doi.org/10.5194/amt-3-1569-2010, 2010a.
    Jardine, K., Sommer, E., Saleska, S., Huxman, T., Harley, P., and Abrell, L.: Gas Phase Measurements of Pyruvic Acid and Its Volatile Metabolites, Environ. Sci. Technol., 44, 2454–2460, https://doi.org/10.1021/es903544p, 2010b.
    Karl, T., Potosnak, M., Guenther, A., Clark, D., Walker, J., Herrick, J. D., and Geron, C.: Exchange processes of volatile organic compounds above a tropical rain forest: Implications for modeling tropospheric chemistry above dense vegetation, J. Geophys. Res.-Atmos., 109, D18306, https://doi.org/10.1029/2004JD004738, 2004.
    Karl, T., Harley, P., Guenther, A., Rasmussen, R., Baker, B., Jardine, K., and Nemitz, E.: The bi-directional exchange of oxygenated VOCs between a loblolly pine (Pinus taeda) plantation and the atmosphere, Atmos. Chem. Phys., 5, 3015–3031, https://doi.org/10.5194/acp-5-3015-2005, 2005.
    Karl, T., Guenther, A., Turnipseed, A., Tyndall, G., Artaxo, P., and Martin, S.: Rapid formation of isoprene photo-oxidation products observed in Amazonia, Atmos. Chem. Phys., 9, 7753–7767, https://doi.org/10.5194/acp-9-7753-2009, 2009.
    Karl, T., Harley, P., Emmons, L., Thornton, B., Guenther, A., Basu, C., Turnipseed, A., and Jardine, K.: Efficient atmospheric cleansing of oxidized organic trace gases by vegetation, Science, 330, 816–819, https://doi.org/10.1126/science.1192534, 2010.
    Keene, W. C., Galloway, J. N., and Holden, J. D.: Measurement of Weak Organic Acidity in Precipitation from Remote Areas of the World, J. Geophys. Res.-Oc. Atm., 88, 5122–5130, 1983.
    Kesselmeier, J.: Exchange of short-chain oxygenated volatile organic compounds (VOCs) between plants and the atmosphere: A compilation of field and laboratory studies, J. Atmos. Chem., 39, 219–233, 2001.
    Kesselmeier, J. and Staudt, M.: Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology, J. Atmos. Chem., 33, 23–88, 1999.
    Kesselmeier, J., Bode, K., Gerlach, C., and Jork, E. M.: Exchange of atmospheric formic and acetic acids with trees and crop plants under controlled chamber and purified air conditions, Atmos. Environ., 32, 1765–1775, 1998.
    Kesselmeier, J., Kuhn, U., Rottenberger, S., Biesenthal, T., Wolf, A., Schebeske, G., Andreae, M. O., Ciccioli, P., Brancaleoni, E., Frattoni, M., Oliva, S. T., Botelho, M. L., Silva, C. M. A., and Tavares, T. M.: Concentrations and species composition of atmospheric volatile organic compounds (VOCs) as observed during the wet and dry season in Rondonia (Amazonia), J. Geophys. Res.-Atmos., 107, 8053, https://doi.org/10.1029/2000JD000267, 2002.
    Kuhn, U., Rottenberger, S., Biesenthal, T., Ammann, C., Wolf, A., Schebeske, G., Oliva, S. T., Tavares, T. M., and Kesselmeier, J.: Exchange of short-chain monocarboxylic acids by vegetation at a remote tropical forest site in Amazonia, J. Geophys. Res.-Atmos., 107, 8069, https://doi.org/10.1029/2000jd000303, 2002.
    Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F., and Nepstad, D.: The 2010 Amazon Drought, Science, 331, 554–554, https://doi.org/10.1126/science.1200807, 2011.
    Liedvogel, B. and Stumpf, P. K.: Origin of Acetate in Spinach Leaf Cell, Plant Physiology, 69, 897–903, 1982.
    Martin, S. T., Andreae, M. O., Althausen, D., Artaxo, P., Baars, H., Borrmann, S., Chen, Q., Farmer, D. K., Guenther, A., Gunthe, S. S., Jimenez, J. L., Karl, T., Longo, K., Manzi, A., Müller, T., Pauliquevis, T., Petters, M. D., Prenni, A. J., Pöschl, U., Rizzo, L. V., Schneider, J., Smith, J. N., Swietlicki, E., Tota, J., Wang, J., Wiedensohler, A., and Zorn, S. R.: An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08), Atmos. Chem. Phys., 10, 11415–11438, http://dx.doi.org/10.5194/acp-10-11415-2010https://doi.org/10.5194/acp-10-11415-2010, 2010.
    Niinemets, U. and Reichstein, M.: Controls on the emission of plant volatiles through stomata: Differential sensitivity of emission rates to stomatal closure explained, J. Geophys. Res.-Atmos., 108, 4208, https://doi.org/10.1029/2002jd002620, 2003.
    Paulot, F., Wunch, D., Crounse, J. D., Toon, G. C., Millet, D. B., DeCarlo, P. F., Vigouroux, C., Deutscher, N. M., González Abad, G., Notholt, J., Warneke, T., Hannigan, J. W., Warneke, C., de Gouw, J. A., Dunlea, E. J., De Mazière, M., Griffith, D. W. T., Bernath, P., Jimenez, J. L., and Wennberg, P. O.: Importance of secondary sources in the atmospheric budgets of formic and acetic acids, Atmos. Chem. Phys., 11, 1989–2013, https://doi.org/10.5194/acp-11-1989-2011, 2011.
    Pegoraro, E., Abrell, L., Van Haren, J., Barron-Gafford, G., Grieve, K. A., Malhi, Y., Murthy, R., and Lin, G. H.: The effect of elevated atmospheric CO2 and drought on sources and sinks of isoprene in a temperate and tropical rainforest mesocosm, Global Change Biology, 11, 1234–1246, https://doi.org/10.1111/j.1365-2486.2005.00986.x, 2005.
    Sanhueza, E., Ferrer, Z., Romero, J., and Santana, M.: Hcho and Hcooh in Tropical Rains, Ambio, 20, 115–118, 1991.
    Sanhueza, E., Santana, M., and Hermoso, M.: Gas-Phase and Aqueous-Phase Formic and Acetic-Acids at a Tropical Cloud Forest Site, Atmos Environ, 26, 1421–1426, 1992.
    Seco, R., Penuelas, J., and Filella, I.: Short-chain oxygenated VOCs: Emission and uptake by plants and atmospheric sources, sinks, and concentrations, Atmos. Environ., 41, 2477–2499, https://doi.org/10.1016/j.atmosenv.2006.11.029, 2007.
    Sommer, R., Sa, T. D. D., Vielhauer, K., de Araujo, A. C., Folster, H., and Vlek, P. L. G.: Transpiration and canopy conductance of secondary vegetation in the eastern Amazon, Agr. Forest Meteorol., 112, 103–121, 2002.
    Talbot, R. W., Beecher, K. M., Harriss, R. C., and Cofer, W. R.: Atmospheric Geochemistry of Formic and Acetic-Acids at a Mid-Latitude Temperate Site, J. Geophys. Res.-Atmos., 93, 1638–1652, 1988.
    Talbot, R. W., Andreae, M. O., Berresheim, H., Jacob, D. J., and Beecher, K. M.: Sources and sinks of formic, acetic, and pyruvic acids over central Amazonia. 2: Wet Season, J. Geophys. Res.-Atmos., 95, 16799–16811, 1990.
    Talbot, R. W., Mosher, B. W., Heikes, B. G., Jacob, D. J., Munger, J. W., Daube, B. C., Keene, W. C., Maben, J. R., and Artz, R. S.: Carboxylic-Acids in the Rural Continental Atmosphere over the Eastern United-States during the Shenandoah Cloud and Photochemistry Experiment, J. Geophys. Res.-Atmos., 100, 9335–9343, 1995.
    Tani, A. and Hewitt, C. N.: Uptake of Aldehydes and Ketones at Typical Indoor Concentrations by Houseplants, Environmental Science & Technology, 43, 8338–8343, https://doi.org/10.1021/Es9020316, 2009.
    Vaïtilingom, M., Amato, P., Sancelme, M., Laj, P., Leriche, M., and Delort, A.-M.: Contribution of microbial activity to carbon chemistry in clouds, Appl. Environ. Microb., 76, citeulike-article-id:6928263, 23–29, 2010.
    Vourlitis, G. L., Nogueira, J. D., Lobo, F. D., Sendall, K. M., de Paulo, S. R., Dias, C. A. A., Pinto, O. B., and de Andrade, N. L. R.: Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin, Water Resour. Res., 44, W03412, https://doi.org/10.1029/2006wr005526, 2008.
    Yu, S.: Role of organic acids (formic, acetic, pyruvic and oxalic) in the formation of cloud condensation nuclei (CCN): a review, Atmospheric Research, 53, 185–217, https://doi.org/10.1016/s0169-8095(00)00037-5, 2000.
    Zhang, Y., Sun, K. H., Sandoval, F. J., Santiago, K., and Roje, S.: One-carbon metabolism in plants: characterization of a plastid serine hydroxymethyltransferase, Biochem. J., 430, 97–105, https://doi.org/10.1042/Bj20100566, 2010.