Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Effect of the thermostat in the molecular dynamics simulation on the folding of the model protein chignolin (2012)

  • Authors:
  • USP affiliated authors: DEGREVE, LEO - FFCLRP
  • USP Schools: FFCLRP
  • DOI: 10.1007/s00894-011-1282-2
  • Subjects: PROTEÍNAS (MODELOS;INTERAÇÃO); MOLÉCULA (ATIVIDADE); FÍSICO-QUÍMICA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00894-011-1282-2 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Journal of Molecular Modeling

    ISSN: 1610-2940

    Citescore - 2017: 1.17

    SJR - 2017: 0.36

    SNIP - 2017: 0.461


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FCLRP2295795pcd 2295795 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      FUZO, Carlos A.; DEGRÈVE, Léo. Effect of the thermostat in the molecular dynamics simulation on the folding of the model protein chignolin. Journal of Molecular Modeling, Heidelberg, v. 18, n. 6, p. 2785-2794, 2012. Disponível em: < http://dx.doi.org/10.1007/s00894-011-1282-2 > DOI: 10.1007/s00894-011-1282-2.
    • APA

      Fuzo, C. A., & Degrève, L. (2012). Effect of the thermostat in the molecular dynamics simulation on the folding of the model protein chignolin. Journal of Molecular Modeling, 18( 6), 2785-2794. doi:10.1007/s00894-011-1282-2
    • NLM

      Fuzo CA, Degrève L. Effect of the thermostat in the molecular dynamics simulation on the folding of the model protein chignolin [Internet]. Journal of Molecular Modeling. 2012 ; 18( 6): 2785-2794.Available from: http://dx.doi.org/10.1007/s00894-011-1282-2
    • Vancouver

      Fuzo CA, Degrève L. Effect of the thermostat in the molecular dynamics simulation on the folding of the model protein chignolin [Internet]. Journal of Molecular Modeling. 2012 ; 18( 6): 2785-2794.Available from: http://dx.doi.org/10.1007/s00894-011-1282-2

    Referências citadas na obra
    Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718
    Sanbonmatsu KY, Tung CS (2007) High performance computing in biology: multimillion atom simulations of nanoscale systems. J Struct Biol 157:470–480
    Klein ML, Shinoda W (2008) Large-scale molecular dynamics simulations of self-assembling systems. Science 321:798–800
    Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J ChemPhys 72:2384–2393
    Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268
    Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697
    Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690
    Morishita TJ (2000) Fluctuation formulas in molecular-dynamics simulations with the weak coupling heat bath. Chem Phys 113:2976–2982
    Cheng A, Merz KM (1996) Application of the nosé−hoover chain algorithm to the study of protein dynamics. J Phys Chem 100:1927–1937
    Hünenberger PH (2005) Thermostat algorithms for molecular dynamics simulations. Adv Polym Sci 173:105–149
    Eastwood MP, Stafford KA, Lippert RA, Jensen MO, Maragakis P, Predescu C, Dror RO, Shaw DE (2010) Equipartiotion and the calculation of temperature in biomolecular simulations. J Chem Theor Comput 6:2045–2058
    Lingenheil M, Denschlag R, Reichold R, Tavan P (2008) The “hot-solvent/cold-solute” problem revisited. J Chem Theor Comput 4:1293–1306
    Kennedy D, Norman C (2005) So much more to know. Science 309:78–102
    Dill KA, Ozkan SB, Shell MS, Weikl TR (2008) The protein folding problem. Annu Rev Biophys 37:289–316
    Honda S, Yamasaki K, Sawada Y, Morii H (2004) 10 Residue folded peptide designed by segment statistics. Structure 12:1507–1518
    Seibert MM, Patriksson A, Hess B, van der Spoel D (2005) Reproducible polypeptide folding and structure prediction using molecular dynamics simulations. J Mol Biol 354:173-183
    van der Spoel E, Seibert MM (2006) Protein folding kinetics and thermodynamics from atomistic simulations. Phys Rev Lett 96:238102
    Suenaga A, Narumi T, Futatsugi N, Yanai R, Ohno Y, Okimoto N, Taiji M (2007) Folding dynamics of 10-residue β-hairpin peptide chignolin. Chem Asian J 2:591–598
    DeLano WL (2002) The PyMOL Molecular Graphics System ( http://www.pymol.org )
    Van Gunsteren WF, Billeter SR, Eising AA, Hunenberger PH, kruger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular simulation: the GROMOS96 manual and user guide. Hochschulverlag AG an der ETH Zürich, Zürich
    Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) In: Intermolecular Forces (ed) Interactions models for water in relation to protein hydration. Reidel, Dordrecht, the Netherlands, pp 331–342
    Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: A linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472
    Miyamoto S, Kollman PA (1992) SETTLE: an analytical version of the SHAKE and RATTLE algorithms for rigid water models. J Comput Chem 13:952–962
    Darden T, York D, Pedersen L (1993) Particle mesh ewald: an N-log(N) method for ewald sums in large systems. J Chem Phys 98:10089–10092
    Hockney RW, Goel SP, Eastwood J (1974) Quiet highresolution computer models of plasma. J Comput Phys 14:148–158
    Van der Spoel D, Lindahl E, Hess B, van Buuren AR, Apol E, Meulenhoff PJ, Tieleman DP, Sijbers ALTM, Feenstra KA, van Drunen R, Berendsen HJC (2005) Gromacs User Manual version 4.5, www.gromacs.org
    Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151