Ver registro no DEDALUS
Exportar registro bibliográfico



Type 2 Diabetes Mellitus: A Possible Surgically Reversible Intestinal Dysfunction (2012)

  • Authors:
  • USP affiliated authors: WAITZBERG, DAN LINETZKY - FM
  • USP Schools: FM
  • DOI: 10.1007/s11695-011-0563-2
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s11695-011-0563-2 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s11695-011-0563-2 (Fonte: Unpaywall API)

    Título do periódico: Obesity Surgery

    ISSN: 0960-8923,1708-0428

      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Obesity Surgery

    ISSN: 0960-8923

    Citescore - 2017: 2.92

    SJR - 2017: 1.396

    SNIP - 2017: 1.219

  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FM2297512-10BCSEP 041 2012
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SALA, Priscila C.; TORRINHAS, Raquel S.; HEYMSFIELD, Steven B.; WAITZBERG, Dan L. Type 2 Diabetes Mellitus: A Possible Surgically Reversible Intestinal Dysfunction. Obesity Surgery, New York, v. 22, n. 1, p. 167-176, 2012. Disponível em: < > DOI: 10.1007/s11695-011-0563-2.
    • APA

      Sala, P. C., Torrinhas, R. S., Heymsfield, S. B., & Waitzberg, D. L. (2012). Type 2 Diabetes Mellitus: A Possible Surgically Reversible Intestinal Dysfunction. Obesity Surgery, 22( 1), 167-176. doi:10.1007/s11695-011-0563-2
    • NLM

      Sala PC, Torrinhas RS, Heymsfield SB, Waitzberg DL. Type 2 Diabetes Mellitus: A Possible Surgically Reversible Intestinal Dysfunction [Internet]. Obesity Surgery. 2012 ; 22( 1): 167-176.Available from:
    • Vancouver

      Sala PC, Torrinhas RS, Heymsfield SB, Waitzberg DL. Type 2 Diabetes Mellitus: A Possible Surgically Reversible Intestinal Dysfunction [Internet]. Obesity Surgery. 2012 ; 22( 1): 167-176.Available from:

    Referências citadas na obra
    World Health Organization. Facts sheet on diabetes, obesity and overweight. Geneva: World Health Organization; 2006.
    Wild S, Roglic G, Green A, et al. Global prevalence of diabetes. Estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53.
    Bottino R, Trucco M. Multifaceted therapeutic approaches for a multigenic disease. Diabetes. 2005;54:79–86.
    Wilson JB, Pories WJ. Durable remission of diabetes after bariatric surgery: what is the underlying pathway? Insulin. 2010;5:46–55.
    Masharami U, Karam JH, et al. Hôrmonios pancreáticos e diabetes melito. In: Greenspan FS, Gardner DG, editors. Endocrinologia Básica e Clínica. New York: McGraw-Hill; 2006. p. 541–55.
    Sartorelli DS, Franco LJ. Trends in diabetes mellitus in Brazil: the role of the nutritional transition. Cad Saúde Pública. 2003;19:29–36.
    Canadian Diabetes Association. Clinical practice guidelines for the prevention and management of diabetes in Canada. Toronto: Canadian Diabetes Association; 2008. p. 77.
    Shafrir E. Development and consequences of insulin resistance: lessons from animals with hyperinsulinaemia. Diabetes Metab. 1996;22:122–31.
    Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000;106:171–6.
    Mingrone G, Castagneto-Gissey L. Mechanisms of early improvement/resolution of type 2 diabetes after bariatric surgery. Diabetes Metab. 2009;35:518–23.
    Rubino F, Marescaux J. Effect of duodenal–jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Annals of Surg. 2004;239:1–11.
    Cummings DE, Overduin J, Foster-Schubert KE. Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endocrinol Metab. 2004;89:2608–15.
    Schauer PR, Burguera B, Ikramuddin S, et al. Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Annals of Surg. 2003;238:467–84.
    Pories WJ, Swanson MS, McDonald KG, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Annals of Surg. 1995;222:339–50.
    Guidone C, Manco M, Valera-Mora E, et al. Mechanisms of recovery from type 2 diabetes after malabsorptive bariatric surgery. Diabetes. 2006;55:2025–31.
    Mari A, Manco M, Guidone C, et al. Restoration of normal glucose tolerance in severely obese patients after bilio-pancreatic diversion: role of insulin sensitivity and beta cell function. Diabetol. 2006;49:2136–43.
    Pories WJ, Caro JF, Flickinger EG, et al. The control of diabetes mellitus (NIDDM) in the morbidly obese with the Greenville Gastric Bypass. Annals of Surg. 1987;206:316–23.
    Salinari S, Bertuzzi A, Asnaghi S, et al. First-phase insulin secretion restoration and differential response to glucose load depending on the route of administration in type 2 diabetic subjects after bariatric surgery. Diabetes Care. 2009;32:375–80.
    Rubino F, Gagner M, Gentileschi P, et al. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Annals of Surg. 2004;240:236–42.
    Briatore L, Salani B, Andraghetti G, et al. Restoration of acute insulin response in T2DM subjects 1 month after biliopancreatic diversion. Obes. 2008;16:77–81.
    American Diabetes Association. Standards of medical care in diabetes—2009. Diabetes Care. 2009;32:13–61.
    Scheen AJ, De Flines J, De Roover A, et al. Bariatric surgery in patients with type 2 diabetes: benefits, risks, indications and perspectives. Diabetes Metab. 2009;35:537–43.
    Crookes PF. Surgical treatment of morbid obesity. Annu Rev Med. 2006;57:243–64.
    Pories WJ. Bariatric surgery: risks and rewards. J Clin Endocrinol Metab. 2008;93:89–96.
    Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2008. Obes Surg. 2009;19:1605–11.
    Mason EE, Doherty C, Cullen JJ, et al. Vertical gastroplasty: evolution of vertical banded gastroplasty. World J Surg. 1998;22:919–24.
    Rubino F, Schauer PR, Kaplan LM, et al. Metabolic surgery to treat type 2 diabetes: clinical outcomes and mechanisms of action. Annu Rev Med. 2010;61:393–411.
    Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724–37.
    Rubino F. Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis. Diabetes Care. 2008;3:290–6.
    Scopinaro N, Marinari GM, Camerini GB, et al. Specific effects of biliopancreatic diversion on the major components of metabolic syndrome: a long-term follow-up study. Diabetes Care. 2005;28:2406–11.
    Hall TC, Pellen MG, Sedman PC, et al. Preoperative factors predicting remission of type 2 diabetes mellitus after Roux-en-Y gastric bypass surgery for obesity. Obes Surg. 2010;20:1245–50.
    Kashyap SR, Gatmaitan P, Brethauer S, et al. Bariatric surgery for type 2 diabetes: weighing the impact for obese patients. Cleve Clin J Med. 2010;77:468–76.
    Polonsky KS, Gumbiner B, Ostrega D, et al. Alterations in immunoreactive proinsulin and insulin clearance induced by weight loss in NIDDM. Diabetes. 1994;43:871–7.
    Gumbiner B, Van Cauter E, Beltz WF, et al. Abnormalities of insulin pulsatility and glucose oscillations during meals in obese noninsulin-dependent diabetic patients: effects of weight reduction. J Clin Endocrinol Metab. 1196;81:2061–8.
    Sugerman HJ, Wolfe LG, Sica DA. Diabetes and hypertension in severe obesity and effects of gastric bypass-induced weight loss. Annals of Surg. 2003;237:751–8.
    Dixon JB. Obesity and diabetes: the impact of bariatric surgery on type-2 diabetes. World J Surg. 2009;33:2014–21.
    Parikh M, Duncombe J, Fielding GA. Laparoscopic adjustable gastric banding for patients with body mass index of ≤35 kg/m2. Surg Obes Relat Dis. 2006;2:518–22.
    Dixon JB, O’Brien PE, Playfair J, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA. 2008;299:316–23.
    Cummings DE. Endocrine mechanisms mediating remission of diabetes after gastric bypass surgery. Int J Obes (Lond). 2009;33:33–40.
    Rehfeld JF. The new biology of gastrointestinal hormones. Physiol Rev. 1198;78:1087–108.
    Drucker DJ. The role of gut hormones in glucose homeostasis. J Clin Invest. 2007;117:24–32.
    Drucker DJ. The biology of incretin hormones. Cell Metab. 2006;3:153–65.
    Mithieux G. The new functions of the gut in the control of glucose homeostasis. Curr Opin Clin Nutr Metab Care. 2005;8:445–9.
    Delaere F, Magnan C, Mithieux G. Hypothalamic integration of portal glucose signals and control of food intake and insulin sensitivity. Diabetes Metab. 2010;36:257–62.
    Cui XL, Sotenopoulos P, Tolias P, et al. Fructose-responsive genes in the small intestine of neonatal rats. Physiol Genomics. 2004;18:206–17.
    Kirchner S, Seixas P, Kaushik S, et al. Effect of low protein intake on extra-hepatic, gluconeogenic enzyme expression and peripheral, glucose phosphorylation in rainbow trout. Comp Biochem Physiol B Biochem Nol Biol. 2005;140:333–40.
    Yanez AJ, Nualart F, Droppelmann C, et al. Broad expression of fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase provide evidence for gluconeogenesis in human issues other than liver and kidney. J Cell Physiol. 2003;197:189–97.
    Chatelain F, Pegorier JP, Minassian C, et al. Development and regulation of glucose-6 phosphatase gene expression in liver, intestine and kidney; in vivo and in vitro studies in cultured fetal hepatocytes. Diabetes. 1998;47:882–9.
    She P, Burgess SC, Shiota M, et al. Mechanisms by which liver-specific PEPCK knockout mice preserve euglycemia during starvation. Diabetes. 2003;52:1649–54.
    Battezzati A, Caumo A, Martino F, et al. Non hepatic glucose production in humans. Am J Physiol Endocrinol Metab. 2004;286:E124–35.
    Troy S, Soty M, Ribeiro L, et al. Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice. Cell Metab. 2008;8:201–11.
    Mithieux G. A novel function of intestinal gluconeogenesis: central signaling in glucose and energy homeostasis. Nutrition. 2009;25:881–4.
    Bikman BT, Zheng D, Pories WJ, et al. Mechanisms for improved insulin sensitivity after gastric bypass surgery. J Clin Endocrinol Metab. 2008;93:4656–63.
    Flatt PR. Effective surgical treatment of obesity may be mediated by ablation of the lipogenic gut hormone gastric inhibitory polypeptide (GIP): evidence and clinical opportunity for development of new obesity-diabetes drugs. Diab Vasc Dis Res. 2007;4:150–2.
    Kashyap SR, Daud S, Kelly KR, et al. Acute effect of gastric bypass versus gastric restrictive surgery on B-cell function and insulinotropic hormones in severely obese patients with type 2 diabetes. Int J Obes (Lond). 2010;34:462–71.
    Wickremesekera K, Miller G, Naotunne TD, et al. Loss of insulin resistance after Roux-en-Y gastric bypass surgery: a time course study. Obes Surg. 2005;15:474–81.
    Strader AD, Vahl TP, Jandacek RJ, et al. Weight loss through ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats. Am J Physiol Endocrinol Metab. 2005;288:E447–53.
    Patriti A, Facchiano E, Annetti C, et al. Early improvement of glucose tolerance after ileal transposition in a non-obese type 2 diabetes rat model. Obes Surg. 2005;15:1258–64.
    Patriti A, Aisa MC, Annetti C, et al. How the hindgut can cure type 2 diabetes. Ileal transposition improves glucose metabolism and beta-cell function in Goto–Kakizaki rats through an enhanced proglucagon gene expression and L-cell number. Surg. 2007;142:74–85.
    Karra E, Yousseif A, Batterham RL. Mechanisms facilitating weight loss and resolution of type 2 diabetes following bariatric surgery. Trends Endocrinol Metab. 2010;21:337–44.
    Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Annals of Surg. 2006;244:741–9.
    Rodriguez-Grunert L, Galvao Neto MP, Alamo M, et al. First human experience with endoscopically delivered and retrieved duodenal–jejunal bypass sleeve. Surg Obes Relat Dis. 2008;4:55–9.
    Tarnoff M, Sorli C, Rodriguez L, et al. Interim report of a prospective, randomized sham controlled trial investigating a completely endoscopic duodenal–jejunal bypass sleeve for the treatment of type 2 diabetes. Diabetes. 2008;57:A32.
    Knop FK. Resolution of type 2 diabetes following gastric bypass surgery: involvement of gut-derived glucagon and glucagonotropic signalling. Diabetol. 2009;52:2270–6.
    Aronoff SL, Berkowitz K, Shreiner B, et al. Glucose metabolism and regulation: beyond insulin and glucagon. Diabetes Spectr. 2004;17:183–90.
    Holst JJ. Extra-pancreatic glucagons. Dig. 1978;17:168–90.
    Holst JJ, Pedersen JH, Baldissera F, et al. Circulating glucagon after total pancreatectomy in man. Diabetol. 1983;25:396–9.
    Novak U, Wilks A, Buell G, et al. Identical messenger-Rna for preproglucagon in pancreas and gut. Eur J Biochem. 1987;164:553–8.
    Mojsov S, Heinrich G, Wilson IB, et al. Preproglucagon gene-expression in pancreas and intestine diversifies at the level of posttranslational processing. J Biol Chem. 1986;261:11880–9.
    Orskov C, Holst JJ, Knuhtsen S, et al. Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinol. 1986;119:1467–75.
    Orskov C, Holst JJ, Poulsen SS, et al. Pancreatic and intestinal processing of proglucagon in man. Diabetol. 1987;30:874–81.
    Orskov C, Andreasen J, Holst JJ. All products of proglucagon are elevated in plasma from uremic patients. J Clin Endocrinol Metab. 1992;74:379–84.
    Orskov C, Bersani M, Johnsen AH, et al. Complete sequences of glucagon-like peptide-1 from human and pig small intestine. J Biol Chem. 1989;264:12826–9.
    Thim L, Moody AJ. The primary structure of porcine glicentin (proglucagon). Regul Pept. 1981;2:139–50.
    Vilsboll T. On the role of the incretin hormones GIP and GLP-1 in the pathogenesis of type 2 diabetes mellitus. Dan Med Bull. 2004;51:364–70.
    Toft-Nielsen MB, Damholt MB, Madsbad S, et al. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab. 2001;86:3717–23.
    Nauck MA, Heimesaat MM, Orskov C, et al. Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest. 1993;91:301–7.
    Service GJ, Thompson GB, Service FJ, et al. Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. N Engl J Med. 2005;353:249–54.
    Chevallier JM. Gastric banding using adjustable silastic ring in 2010. Technique, indications, results, and management. J Visceral Surg. 2010;147S:e21–9.
    Baltasar A, Serra C, Perez N, et al. Laparoscopic sleeve gastrectomy: a multi-purpose bariatric operation. Obes Surg. 2005;15:1124–8.
    Kremen A, Linner JH, Nelson CH. An experimental evaluation of the nutritional importance of proximal and distal small intestine. Ann Surg. 1954;140:439–48.
    Griffen WO, Bivins BA, Bell RM. The decline and fall of jejunoileal bypass. Surg Gynecol Obstet. 1983;157:301–8.
    Thomas S, Schauer P. Bariatric surgery and the gut hormone response. Nutr Clin Pract. 2010;25:175–82.
    Scopinaro N, Gianetta E, Adami GF, et al. Biliopancreatic diversion for obesity at eighteen years. Surg. 1996;119:261–8.
    Hess DS, Hess DW. Biliopancreatic diversion with a duodenal switch. Obes Surg. 1998;8:267–82.
    Cummings DE, Foster-Schubert KE, Overduin J. Ghrelin and energy balance: focus on current controversies. Curr Drug Targets. 2005;6:153–69.
    Kuntz E, Pinget M, Damge P. Cholecystokinin octapeptide: a potential growth factor for pancreatic beta cells in diabetic rats. JOP. 2004;5:464–75.
    Ahren B, Holst JJ, Efendic S. Antidiabetogenic action of cholecystokinin-8 in type 2 diabetes. J Clin Endocrinol Metab. 2000;85:1043–8.
    Meier JJ, Gallwitz B, Siepmann N, et al. Gastric inhibitory polypeptide (GIP) dose-dependently stimulates glucagon secretion in healthy human subjects at euglycaemia. Diabetol. 2003;46:798–801.
    Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterol. 2007;132:2131–57.
    Drucker DJ. Glucagon-like peptides: regulators of cell proliferation, differentiation and apoptosis. Mol Endocrinol. 2003;17:161–71.
    Ohneda A, Ohneda K, Nagasaki T, et al. Insulinotropic action of human glicentin in dogs. Metabolism. 1195;44:47–51.
    Sinclair EM, Drucker DJ. Proglucagon-derived peptides: mechanisms of action and therapeutic potential. Physiol (Bethesda). 2005;20:357–65.
    Maida A, Lovshin JA, Baggio LL, et al. The glucagon-like peptide-1 receptor agonist oxyntomodulin enhances β-cell function but does not inhibit gastric emptying in mice. Endocrinol. 2008;149:5670–8.
    Laferrere B, Swerdlow N, Bawa B, et al. Rise of oxyntomodulin in response to oral glucose after gastric bypass surgery in patients with type 2 diabetes. J Clin Endocrinol Metab. 2010;95:4072–6.
    Korner J, Bessler M, Cirilo LJ, et al. Effects of Roux-en-Y gastric bypass surgery on fasting and postprandial concentrations of plasma ghrelin, peptide YY, and insulin. J Clin Endocrinol Metab. 2005;90:359–65.
    Chan JL, Mun EC, Stoyneva V, et al. Peptide YY levels are elevated after gastric bypass surgery. Obes (Silver Spring). 2006;14:194–8.
    van den Hoek AM, Heijboer AC, Corssmit EP, et al. PYY3-36 reinforces insulin action on glucose disposal in mice fed a high-fat diet. Diabetes. 2004;53:1949–52.