Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Systemic delivery of human mesenchymal stromal cells combined with IGF-1 enhances muscle functional recovery in LAMA2dy/2j dystrophic mice (2013)

  • Authors:
  • USP affiliated authors: VAINZOF, MARIZ - IB ; MIYABARA, ELEN HARUKA - ICB ; OKAMOTO, OSWALDO KEITH - IB ; ZATZ, MAYANA - IB ; BUENO JÚNIOR, CARLOS ROBERTO - EEFERP
  • USP Schools: IB; ICB; IB; IB; EEFERP
  • DOI: 10.1007/s12015-012-9380-9
  • Subjects: DISTROFIA MUSCULAR; CÉLULAS-TRONCO; CORDÃO UMBILICAL
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s12015-012-9380-9 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    Versões disponíveis em Acesso Aberto do: 10.1007/s12015-012-9380-9 (Fonte: Unpaywall API)

    Título do periódico: Stem Cell Reviews and Reports

    ISSN: 1550-8943,1558-6804



      Não possui versão em Acesso aberto

    Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICB12100080506PC ICB BMA SEP 2013
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SECCO, Mariane; BUENO JR., Carlos Roberto; VIEIRA, Natássia M; et al. Systemic delivery of human mesenchymal stromal cells combined with IGF-1 enhances muscle functional recovery in LAMA2dy/2j dystrophic mice. Stem Cell Reviews and Reports, Totowa, v. 9, n. 1, p. 93-109, 2013. Disponível em: < http://dx.doi.org/10.1007/s12015-012-9380-9 > DOI: 10.1007/s12015-012-9380-9.
    • APA

      Secco, M., Bueno Jr., C. R., Vieira, N. M., Almeida, C., Pelatti, M., Zucconi, E., et al. (2013). Systemic delivery of human mesenchymal stromal cells combined with IGF-1 enhances muscle functional recovery in LAMA2dy/2j dystrophic mice. Stem Cell Reviews and Reports, 9( 1), 93-109. doi:10.1007/s12015-012-9380-9
    • NLM

      Secco M, Bueno Jr. CR, Vieira NM, Almeida C, Pelatti M, Zucconi E, Bartolini P, Vainzof M, Miyabara EH, Okamoto OK, Zatz M. Systemic delivery of human mesenchymal stromal cells combined with IGF-1 enhances muscle functional recovery in LAMA2dy/2j dystrophic mice [Internet]. Stem Cell Reviews and Reports. 2013 ; 9( 1): 93-109.Available from: http://dx.doi.org/10.1007/s12015-012-9380-9
    • Vancouver

      Secco M, Bueno Jr. CR, Vieira NM, Almeida C, Pelatti M, Zucconi E, Bartolini P, Vainzof M, Miyabara EH, Okamoto OK, Zatz M. Systemic delivery of human mesenchymal stromal cells combined with IGF-1 enhances muscle functional recovery in LAMA2dy/2j dystrophic mice [Internet]. Stem Cell Reviews and Reports. 2013 ; 9( 1): 93-109.Available from: http://dx.doi.org/10.1007/s12015-012-9380-9

    Referências citadas na obra
    Emery, A. E. (2002). The muscular dystrophies. Lancet, 359, 687–695.
    O’Brien, K. F., & Kunkel, L. M. (2001). Dystrophin and muscular dystrophy: past, present, and future. Molecular Genetics and Metabolism, 74, 75–88.
    Dubowitz, V. (1999). 68th ENMC international workshop: on congenital muscular dystrophy, 9–11, April 1999 Naarden, The Netherlands. Neuromuscular Disorders, 9, 446–454.
    Dalkilic, I., & Kunkel, L. M. (2003). Muscular dystrophies: genes to pathogenesis. Current Opinion in Genetics & Development, 13, 231–238.
    Kumar, A., Yamauchi, J., Girgenrath, T., & Girgenrath, M. (2011). Muscle-specific expression of insulin-like growth factor 1 improves outcome in Lama2Dy-w mice, a model for congenital muscular dystrophy type 1A. Human Molecular Genetics, 20, 2333–2343.
    Chamberlain, J. R., & Chamberlain, J. S. (2010). Muscling in: gene therapies for muscular dystrophy target RNA. Nature Medicine, 16, 170–171.
    Kerkis, I., Ambrosio, C. E., Kerkis, A., et al. (2008). Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: local or systemic? Journal of Translational Medicine, 6, 35.
    Vieira, N. M., Bueno, C. R., Brandalise, V., et al. (2008). Sjl dystrophic mice express a significant amount of human muscle proteins following systemic delivery of human adipose-derived stromal cells without immunosupression. Stem Cells, 26, 2391–2398.
    Gang, E. J., Darabi, R., Bosnakovski, D., et al. (2009). Engraftment of mesenchymal stem cells into dystrophin-deficient mice is not accompanied by functional recovery. Experimental Cell Research, 315, 2624–2636.
    Vieira, N. M., Zucconi, E., Bueno, C. R., et al. (2010). Human multipotent mesenchymal stromal cells from distinct sources show different in vivo potential to differentiate into muscle cells when injected in dystrophic mice. Stem Cell Reviews and Reports, 6, 560–566.
    Vieira, N. M., Valadares, M., Zucconi, E., et al. (2011). Human adipose-derived mesenchymal stromal cells injected systemically into GRMD dogs without immunosupression are able to reach the host muscle and express human dystrophin. Cell Transplantation. doi: 10.3727/096368911X603648 .
    Nitahara-Kasahara, Y., Hayashita-Kinoh, H., Ohshima-Hosoyama, S., et al. (2012). Long-term engraftment of multipotent mesenchymal stromal cells that differentiate to form myogenic cells in dogs with duchenne muscular dystrophy. Molecular Therapy, 20, 168–177.
    da Justa Pinheiro, C. H., de Queiroz, J. C., Guimarães-Ferreira, L., et al. (2011). Local injections of adipose-derived mesenchymal stem cells modulate inflammation and increase angiogenesis ameliorating the dystrophic phenotype in dystrophin-deficient skeletal muscle. Stem Cell Reviews and Reports. doi: 10.1007/s12015-011-9304-0 .
    Zucconi, E., Vieira, N. M., Bueno, C. R., et al. (2011). Preclinical studies with umbilical cord mesenchymal stromal cells in different animal models for muscular dystrophy. Journal of Biomedicine and Biotechnology. doi: 10.1155/2011/715251 .
    Gang, E. J., Bosnakovski, D., Simsek, T., To, K., & Perlingeiro, R. C. (2008). Pax3 activation promotes the differentiation of mesenchymal stem cells toward the myogenic lineage. Experimental Cell Research, 314, 1721–1733.
    Goudenege, S., Pisani, D. F., Wdziekonski, B., et al. (2009). Enhancement of myogenic and muscle repair capacities of human adipose-derived stem cells with forced expression of MyoD. Molecular Therapy, 17, 1064–1072.
    Kocaefe, C., Balci, D., Hayta, B. B., & Can, A. (2010). Reprogramming of human umbilical cord stromal mesenchymal stem cells for myogenic differentiation and muscle repair. Stem Cell Reviews and Reports, 6, 512–522.
    Wagner, J., Kean, T., Young, R., Dennis, J. E., & Caplan, A. I. (2009). Optimizing mesenchymal stem cell-based therapeutics. Current Opinion in Biotechnology, 20, 531–536.
    Mourkioti, F., & Rosenthal, N. (2005). IGF-1, inflammation and stem cells: interactions during muscle regeneration. Trends in Immunology, 26, 535–542.
    Lynch, G. S., Cuffe, S. A., Plant, D. R., & Gregorevic, P. (2011). IGF-I treatment improves the functional properties of fast- and slow-twitch skeletal muscles from dystrophic mice. Neuromuscular Disorders, 11, 260–268.
    Gregorevic, P., Plant, D. R., Leeding, K. S., Bach, L. A., & Lynch, G. S. (2002). Improved contractile function of the mdx dystrophic mouse diaphragm muscle after insulin-like growth factor-I administration. American Journal of Pathology, 161, 2263–2272.
    Barton, E. R., Morris, L., Musaro, A., Rosenthal, N., & Sweeney, H. L. (2002). Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. The Journal of Cell Biology, 157, 137–148.
    Gregorevic, P., Plant, D. R., & Lynch, G. S. (2004). Administration of insulin-like growth factor-I improves fatigue resistance of skeletal muscles from dystrophic mdx mice. Muscle & Nerve, 30, 295–304.
    Gehrig, S. M., Ryall, J. G., Schertzer, J. D., & Lynch, G. S. (2008). Insulin-like growth factor-I analogue protects muscles of dystrophic mdx mice from contraction-mediated damage. Experimental Physiology, 93, 1190–1198.
    Sacco, A., Doyonnas, R., LaBarge, M. A., et al. (2005). IGF-I increases bone marrow contribution to adult skeletal muscle and enhances the fusion of myelomonocytic precursors. The Journal of Cell Biology, 171, 483–492.
    Pelosi, L., Giacinti, C., Nardis, C., et al. (2007). Local expression of IGF-1 accelerates muscle regeneration by rapidly modulating inflammatory cytokines and chemokines. The FASEB Journal, 21, 1393–1402.
    Mills, P., Dominique, J. C., Lafrenière, J. F., Bouchentouf, M., & Tremblay, J. P. (2007). A synthetic mechano growth factor E Peptide enhances myogenic precursor cell transplantation success. American Journal of Transplantation, 7, 2247–2259.
    Secco, M., Zucconi, E., Vieira, N. M., et al. (2008). Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells, 26, 146–150.
    Vieira, N. M., Brandalise, V., Zucconi, E., et al. (2008). Human multipotent adipose-derived stem cells restore dystrophin expression of Duchenne skeletal-muscle cells in vitro. Biology of the Cell, 100, 231–241.
    Vainzof, M., Ayub-Guerrieri, D., Onofre, P. C., et al. (2008). Animal models for genetic neuromuscular diseases. Journal of Molecular Neuroscience, 34, 241–248.
    Zatz, M., Zucconi, E., Valadares, M., & Jazedje, T. (2010). Phenotypes in golden retriever. Neuromuscular Disorders, 20, 71.
    Zucconi, E., Valadares, M. C., Vieira, N. M., et al. (2010). Ringo: discordance between the molecular and clinical manifestation in a golden retriever muscular dystrophy dog. Neuromuscular Disorders, 20, 64–70.
    Ichim, T. E., Alexandrescu, D. T., Solano, F., et al. (2010). Mesenchymal stem cells as anti-inflammatories: implications for treatment of Duchenne muscular dystrophy. Cellular Immunology, 260, 75–82.
    English, K., French, A., & Wood, K. J. (2010). Mesenchymal stromal cells: facilitators of successful transplantation? Cell Stem Cell, 7, 431–442.
    Caplan, A. I., & Correa, D. (2011). The MSC: an injury drugstore. Cell Stem Cell, 9, 11–15.
    Gharaibeh, B., Lavasani, M., Cummins, J. H., & Huard, J. (2011). Terminal differentiation is not a major determinant for the success of stem cell therapy - cross-talk between muscle-derived stem cells and host cells. Stem Cell Research & Therapy, 2, 31.
    Ohnishi, S., Sumiyoshi, H., Kitamura, S., & Nagaya, N. (2007). Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. FEBS Letters, 581, 3961–3966.
    Lee, M. J., Jung, J., Na, K. H., et al. (2010). Anti-fibrotic effect of chorionic plate-derived mesenchymal stem cells isolated from human placenta in a rat model of CCl(4)-injured liver: potential application to the treatment of hepatic diseases. Journal of Cellular Biochemistry, 111, 1453–1463.
    Scicchitano, B. M., Rizzuto, E., & Musarò, A. (2009). Counteracting muscle wasting in aging and neuromuscular diseases: the critical role of IGF-1. Aging (Albany NY), 1, 451–457.
    Wingertzahn, M. A., Zdanowicz, M. M., & Slonim, A. E. (1998). Insulin-like growth factor-I and high protein diet decrease calpain-mediated proteolysis in murine muscular dystrophy. Proceedings of the Society for Experimental Biology and Medicine, 218, 244–250.