Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Cluster ensemble selection based on relative validity indexes (2013)

  • Authors:
  • USP affiliated authors: CARVALHO, ANDRÉ CARLOS PONCE DE LEON FERREIRA DE - ICMC ; CAMPELLO, RICARDO JOSÉ GABRIELLI BARRETO - ICMC
  • USP Schools: ICMC; ICMC
  • DOI: 10.1007/s10618-012-0290-x
  • Subjects: INTELIGÊNCIA ARTIFICIAL
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10618-012-0290-x (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    Versões disponíveis em Acesso Aberto do: 10.1007/s10618-012-0290-x (Fonte: Unpaywall API)

    Título do periódico: Data Mining and Knowledge Discovery

    ISSN: 1384-5810,1573-756X



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Data Mining and Knowledge Discovery

    ISSN: 1384-5810

    Citescore - 2017: 3.86

    SJR - 2017: 0.864

    SNIP - 2017: 2.332


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC2303840-10PROD-2303840
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      NALDI, M. C; CARVALHO, André Carlos Ponce de Leon Ferreira de; CAMPELLO, Ricardo José Gabrielli Barreto. Cluster ensemble selection based on relative validity indexes. Data Mining and Knowledge Discovery, Dordrecht, Springer, v. 27, n. 2, p. 259-289, 2013. Disponível em: < http://dx.doi.org/10.1007/s10618-012-0290-x > DOI: 10.1007/s10618-012-0290-x.
    • APA

      Naldi, M. C., Carvalho, A. C. P. de L. F. de, & Campello, R. J. G. B. (2013). Cluster ensemble selection based on relative validity indexes. Data Mining and Knowledge Discovery, 27( 2), 259-289. doi:10.1007/s10618-012-0290-x
    • NLM

      Naldi MC, Carvalho ACP de LF de, Campello RJGB. Cluster ensemble selection based on relative validity indexes [Internet]. Data Mining and Knowledge Discovery. 2013 ; 27( 2): 259-289.Available from: http://dx.doi.org/10.1007/s10618-012-0290-x
    • Vancouver

      Naldi MC, Carvalho ACP de LF de, Campello RJGB. Cluster ensemble selection based on relative validity indexes [Internet]. Data Mining and Knowledge Discovery. 2013 ; 27( 2): 259-289.Available from: http://dx.doi.org/10.1007/s10618-012-0290-x

    Referências citadas na obra
    Aeberhard S, Coomans D, de Vel O (1992) Comparison of classifiers in high dimensional settings. Tech Rep 02, Department of Computer Science and Department of Mathematics and Statistics, James Cook University of North Queensland, Douglas
    Alcock R, Manolopoulos Y (1999) Time-series similarity queries employing a feature-based approach. In: 7th hellenic conference on informatics, Ioannina, Greece, pp 27–29
    Asuncion A, Newman D (2007) UCI machine learning repository. http://www.ics.uci.edu/~mlearn/MLRepository.html
    Ayad HG, Kamel MS (2008) Cumulative voting consensus method for partitions with variable number of clusters. IEEE Trans Pattern Anal Mach Intell 30(1):160–173. doi: 10.1109/TPAMI.2007.1138
    Azimi J, Fern X (2009) Adaptive cluster ensemble selection. In: Twenty-first international joint conference on artificial intelligence (IJCAI-09), Pasadena, CA, USA, pp 992–997
    Bezdek JC, Pal NR (1998) Some new indexes of cluster validity. IEEE Trans Syst Man Cybern 28(3): 301–315
    Bollacker KD, Ghosh J (1998) A supra-classifier architecture for scalable knowledge reuse. In: ICML ’98: Proceedings of the fifteenth international conference on machine learning. Morgan Kaufmann Publishers Inc., San Francisco, pp 64–72
    Calinski RB, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat 3: 1–27
    Caruana R, Munson A, Niculescu-Mizil A (2006) Getting the most out of ensemble selection. In: Proceedings of the 2006 sixth international conference on data mining, pp 828–833
    Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 1: 224–227
    Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7: 1–30
    Dimitriadou E (2003) Explorative data analysis and applications. PhD thesis, Technische Universität Wien, Wien
    Dimitriadou E, Weingessel A, Hornik K (1999) Fuzzy voting in clustering. In: Brewka G, Der R, Gottwald S, Schierwagen A (eds) Fuzzy-neuro systems. Leipziger Universittsverlag, Leipzig, pp 63–74
    Dudoit S, Fridlyand J (2003) Bagging to improve the accuracy of a clustering procedure. Bioinformatics 19(9): 1090–1099
    Dunn JC (1974) Well separated clusters and optimal fuzzy partitions. J Cybern 4: 95–104
    Dunn OJ (1961) Multiple comparisons among means. J Am Stat Assoc 56(293):52–64. http://www.jstor.org/stable/2282330
    Fern XZ, Brodley CE (2004) Solving cluster ensemble problems by bipartite graph partitioning. In: Proceedings of ICML’04, New York, NY, USA, p 36. doi: 10.1145/1015330.1015414
    Fern XZ, Lin W (2008) Cluster ensemble selection. J Stat Anal Data Min 1(3): 128–141. doi: 10.1002/sam.v1:3
    Fisher R (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2): 179–188
    Fred ALN, Jain AK (2005) Combining multiple clusterings using evidence accumulation. IEEE Trans Pattern Anal Mach Intell 27(6): 835–850
    Greene D, Tsymbal A, Bolshakova N, Cunningham P (2004) Ensemble clustering in medical diagnostics. In: CBMS ’04: proceedings of the 17th IEEE symposium on computer-based medical systems. IEEE Computer Society, Washington, DC, USA, pp 576–581. http://dx.doi.org/10.1109/CBMS.2004.40
    Hadjitodorov ST, Kuncheva LI (2007) Selecting diversifying heuristics for cluster ensembles. In: 7th international workshop, pp 200–209
    Hadjitodorov ST, Kuncheva LI, Todorova LP (2006) Moderate diversity for better cluster ensembles. Inf Fusion 7(3): 264–275. doi: 10.1016/j.inffus.2005.01.008
    Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering validation techniques. Intell Inf Syst J 17(2-3): 107–145
    Handl J, Knowles J (2007) An evolutionary approach to multiobjective clustering. IEEE Trans Evolution Comput 11(1): 56–76
    Hochberg Y, Tamhane AC (1987) Multiple comparison procedures. Wiley, New York
    Hollander M, Wolfe DA (1999) Nonparametric statistical methods. Wiley-Interscience, New York
    Hruschka ER, Campello RJGB, de Castro LN (2004a) Evolutionary algorithms for clustering gene-expression data. In: Proceedings of IEEE international conference on data mining, Brighton/England, pp 403–406
    Hruschka ER, Campello RJGB, de Castro LN (2004b) Improving the efficiency of a clustering genetic algorithm. In: Advances in artificial intelligence—IBERAMIA 2004: 9th Ibero-American conference on AI, Puebla, Mexico, November 22–25. Proceedings. Lecture notes in computer science, vol 3315. Springer, New York, pp 861–870
    Hubert LJ, Arabie P (1985) Comparing partitions. J Classif 2: 193–218
    Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vandoise des Sci Nat 44: 223–270
    Jain A, Dubes R (1988) Algorithms for clustering data. Prentice Hall, Upper Saddle River
    Karypis G, Kumar V (1999) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1):359–392. http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
    Kasturi J, Acharya R (2004) Clustering of diverse genomic data using information fusion. In: SAC ’04: proceedings of the 2004 ACM symposium on applied computing. ACM, New York, pp 116–120. doi: http://doi.acm.org/10.1145/967900.967926
    Kaufman L, Rousseeuw P (1990) Finding groups in data: an introduction to cluster analysis Wiley series in probability and mathematical statistics. John Wiley & Sons, New York
    Kuncheva LI (2004) Combining pattern classifiers. John Wiley & Sons, New York
    Kuncheva L, Hadjitodorov S (2004) Using diversity in cluster ensembles. In: Systems, man and cybernetics, 2004 IEEE international conference on, vol 2, pp 1214–1219 10.1109/ICSMC.2004.1399790
    Kuncheva L, Hadjitodorov S, Todorova L (2006) Experimental comparison of cluster ensemble methods. In: Information fusion, 2006 9th international conference on, pp 1–7. doi: 10.1109/ICIF.2006.301614
    Mangasarian OL, Wolberg WH (1990) Cancer diagnosis via linear programming. SIAM News 23(5): 1–18
    Margineantu D, Dietterich T (1997) Pruning adaptive boosting. In: Proceedings of the 14th international conference on machine learning, pp 211–218
    Milligan GW, Cooper MC (1985) An examination of procedures for determining the number of clusters in a data set. Psychometrika 50: 159–179
    Monti S, Tamayo P, Mesirov J, Golub T (2003) Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Mach Learn 52(1-2): 91–118
    Naldi MC, Campello RJGB, Hruschka ER, Carvalho ACPLF (2011) Efficiency issues of evolutionary k-means. Appl Soft Comput 11(2): 1938–1952. doi: 10.1016/j.asoc.2010.06.010
    Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: analysis and an algorithm. In: Advances in neural information processing systems, vol 2, pp 849–856
    Pakhira MK, Bandyopadhyay S, Maulik U (2004) Validity index for crisp and fuzzy clusters. Pattern Recog 37(3):487–501, doi: 10.1016/j.patcog.2003.06.005 , http://www.sciencedirect.com/science/article/B6V14-49YH94Y-3/2/399727cea74b53ae0b747d5f73922009
    Paulovich FV, Nonato LG, Minghim R, Levkowitz H (2008) Least square projection: a fast high-precision multidimensional projection technique and its application to document mapping. IEEE Trans Visual Comput Graph 14:564–575. doi: 10.1109/TVCG.2007.70443 , www.lcad.icmc.usp.br/~paulovic/pex/repository/data.zip
    Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Computat Appl Math 20: 53–65
    Strehl A, Ghosh J (2002) Cluster ensembles: a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 3: 583–617
    Topchy A, Jain A, Punch W (2004) A mixture model for clustering ensembles. In: Proceedings of the SIAM international conference on data mining (SDM’2004), Lake Buena Vista, Florida, USA, pp 331–338
    Tumer K, Agogino AK (2008) Ensemble clustering with voting active clusters. Pattern RecognL ett 29(14): 1947–1953. doi: 10.1016/j.patrec.2008.06.011
    Vendramin L, Campello RJGB, Hruschka ER (2009) On the comparison of relative clustering validity criteria. In: SIAM international conference on data mining, Sparks/USA, pp 733–744
    Vendramin L, Campello RJGB, Hruschka ER (2010) Relative clustering validity criteria: a comparative overview. Stat Anal Data Min 3(4): 209–235. doi: 10.1002/sam.10080
    Walpole RE, Myers R, Myers SL (2006) Probability and statistics for engineers and scientists. Macmillan, New York
    Weingessel A, Dimitriadou E, Hornik K (2003) An ensemble method for clustering. In: Distributed statistical computing (DSC’2003), Wien, Austria, pp 1–12
    Yeung K, Medvedovic M, Bumgarner R (2003) Clustering gene-expression data with repeated measurements. Genome Biol 4(5):R34. doi: 10.1186/gb-2003-4-5-r34 , http://genomebiology.com/2003/4/5/R34