Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Local Injections of adipose-derived mesenchymal stem cells modulate inflammation and increase angiogenesis ameliorating the dystrophic phenotype in dystrophin-deficient skeletal muscle (2012)

  • Authors:
  • USP affiliated authors: NUNES, MARIA TEREZA - ICB ; CURI, RUI - ICB
  • USP Schools: ICB; ICB
  • DOI: 10.1007/s12015-011-9304-0
  • Subjects: FISIOLOGIA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s12015-011-9304-0 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s12015-011-9304-0 (Fonte: Unpaywall API)

    Título do periódico: Stem Cell Reviews and Reports

    ISSN: 1550-8943,1558-6804



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Stem Cell Reviews and Reports

    ISSN: 1550-8943

    Citescore - 2017: 3.77

    SJR - 2017: 1.323

    SNIP - 2017: 0.981


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICB12100078250PC ICB BMB SEP 2012
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      PINHEIRO, Carlos Hermano da Justa; QUEIROZ, Jean César Farias de; GUIMARÃES-FERREIRA, Lucas; et al. Local Injections of adipose-derived mesenchymal stem cells modulate inflammation and increase angiogenesis ameliorating the dystrophic phenotype in dystrophin-deficient skeletal muscle. Stem Cell Reviews, Totowa, v. 8, n. 2, p. 363-374, 2012. Disponível em: < http://dx.doi.org/10.1007/s12015-011-9304-0 > DOI: 10.1007/s12015-011-9304-0.
    • APA

      Pinheiro, C. H. da J., Queiroz, J. C. F. de, Guimarães-Ferreira, L., Vitzel, K. F., Nachbar, R. T., Sousa, L. G. O. de, et al. (2012). Local Injections of adipose-derived mesenchymal stem cells modulate inflammation and increase angiogenesis ameliorating the dystrophic phenotype in dystrophin-deficient skeletal muscle. Stem Cell Reviews, 8( 2), 363-374. doi:10.1007/s12015-011-9304-0
    • NLM

      Pinheiro CH da J, Queiroz JCF de, Guimarães-Ferreira L, Vitzel KF, Nachbar RT, Sousa LGO de, Souza-Junior AL de, Nunes MT, Curi R. Local Injections of adipose-derived mesenchymal stem cells modulate inflammation and increase angiogenesis ameliorating the dystrophic phenotype in dystrophin-deficient skeletal muscle [Internet]. Stem Cell Reviews. 2012 ; 8( 2): 363-374.Available from: http://dx.doi.org/10.1007/s12015-011-9304-0
    • Vancouver

      Pinheiro CH da J, Queiroz JCF de, Guimarães-Ferreira L, Vitzel KF, Nachbar RT, Sousa LGO de, Souza-Junior AL de, Nunes MT, Curi R. Local Injections of adipose-derived mesenchymal stem cells modulate inflammation and increase angiogenesis ameliorating the dystrophic phenotype in dystrophin-deficient skeletal muscle [Internet]. Stem Cell Reviews. 2012 ; 8( 2): 363-374.Available from: http://dx.doi.org/10.1007/s12015-011-9304-0

    Referências citadas na obra
    Leturcq, F., & Kaplan, J. C. (2005). Molecular bases of dystrophinopathies. J Soc Biol, 199, 5–11.
    Burghes, A. H., Logan, C., Hu, X., et al. (1987). A cDNA clone from the Duchenne/Becker muscular dystrophy gene. Nature, 328, 434–437.
    Ferrari, G., Cusella-De Angelis, G., & Coletta, M. (1998). Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 279, 1528–1530.
    Gussoni, E., Soneoka, Y., Strickland, C. D., et al. (1999). Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature, 401, 390–394.
    McKinney-Freeman, S. L., Jackson, K. A., Camargo, F. D., et al. (2002). Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc Natl Acad Sci USA, 99, 1341–1346.
    Fukada, S., Miyagoe–Suzuki, Y., Tsukihara, H., et al. (2002). Muscle regeneration by reconstitution with bone marrow or fetal liver cells from green fluorescent protein-gene transgenic mice. J Cell Sci, 115, 1285–1293.
    LaBarge, M. A., & Blau, H. M. (2002). Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell, 111, 589–601.
    Camargo, F. D., Green, R., Capetanaki, Y., et al. (2003). Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat Med, 9, 1520–1527.
    Corbel, S. Y., Lee, A., Yi, L., et al. (2003). Contribution of hematopoietic stem cells to skeletal muscle. Nat Med, 9, 1528–1532.
    Bachrach, E., Li, S., Perez, A. L., et al. (2004). Systemic delivery of human microdystrophin to regenerating mouse dystrophic muscle by muscle progenitor cells. Proc Natl Acad Sci USA, 101, 3581–3586.
    Wakitani, S., Saito, T., & Caplan, A. I. (1995). Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve, 18, 1417–1426.
    Gonçalves, M. A., de Vries, A. A., Holkers, M., et al. (2006). Human mesenchymal stem cells ectopically expressing full-length dystrophin can complement Duchenne muscular dystrophy myotubes by cell fusion. Hum Mol Genet, 15, 213–221.
    Zuk, P. A., Zhu, M., Mizuno, H., et al. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, 7, 211–228.
    Rodriguez, A. M., Elabd, C., Amri, E. Z., et al. (2005). Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med, 201, 1397–1405.
    Vieira, N. M., Bueno, C. R., Jr., Brandalise, V., et al. (2008). SJL dystrophic mice express a significant amount of human muscle proteins following systemic delivery of human adipose-derived stromal cells without immunosuppression. Stem Cells, 26, 2391–2398.
    Bacou, F., el Andalousi, R. B., Daussin, P. A., et al. (2004). Transplantation of adipose tissue-derived stromal cells increases mass and functional capacity of damaged skeletal muscle. Cell Transplant, 13, 103–111.
    Lee, J. H., & Kemp, D. M. (2006). Human adipose-derived stem cells display myogenic potential and perturbed function in hypoxic conditions. Biochem Biophys Res Commun, 341, 882–888.
    Di Rocco, G., Iachininoto, M. G., Tritarelli, A., et al. (2006). Myogenic potential of adipose-tissue-derived cells. J Cell Sci, 119, 2945–2952.
    Vieira, N. M., Brandalise, V., Zucconi, E., et al. (2008). Human multipotent adipose-derived stem cells restore dystrophin expression of Duchenne skeletal-muscle cells in vitro. Biol Cell, 100, 231–241.
    Messina, S., Mazzeo, A., Bitto, A., et al. (2007). VEGF overexpression via adeno-associated virus gene transfer promotes skeletal muscle regeneration and enhances muscle function in mdx mice. FASEB J, 21, 3737–3746.
    Gargioli, C., Coletta, M., De Grandis, F., et al. (2008). PlGF-MMP-9-expressing cells restore microcirculation and efficacy of cell therapy in aged dystrophic muscle. Nat Med, 14, 973–978.
    Rando, T. A. (2008). Turning back time: reversing tissue pathology to enhance stem cell engraftment. Cell Stem Cell, 3, 232–234.
    Pinheiro, C. H., Vitzel, K. F., & Curi, R. (2010). Effect of N-acetylcysteine on markers of skeletal muscle injury after fatiguing contractile activity. Scand J Med Sci Sports. doi: 10.1111/j.1600-0838.2010.01143.x
    Bassit, R. A., Pinheiro, C. H., Vitzel, K. F., et al. (2010). Effect of short-term creatine supplementation on markers of skeletal muscle damage after strenuous contractile activity. Eur J Appl Physiol, 108, 945–955.
    Chamberlain, J. S., Metzger, J., Reyes, M., et al. (2007). Dystrophin-deficient mdx mice display a reduced life span and are susceptible to spontaneous rhabdomyosarcoma. FASEB J, 21, 2195–2204.
    Moser, H. (1984). Review of studies on the proportion and origin of new mutants in Duchenne muscular dystrophy. In L. P. Ten Kate, P. L. Pearson, & A. M. Stadhouders (Eds.), Research into the Origin and Treatment of Muscular Dystrophy (pp. 41–52). Amsterdam: Excerpta Medica.
    Lynch, G. S., Hinkle, R. T., Chamberlain, J. S., et al. (2001). Force and power output of fast and slow skeletal muscles from mdx mice 6–28 months old. J Physiol, 535, 591–600.
    Gnecchi, M., Zhang, Z., Ni, A., et al. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res, 103, 1204–1219.
    Lecarpentier, Y. (2007). Physiological role of free radicals in skeletal muscles. J Appl Physiol, 103, 1917–1918.
    Irintchev, A. (1987). Muscle damage and repair in voluntarily running mice: strain and muscle differences. Cell Tissue Res, 249, 509–521.
    Mendell, J. R. (1971). Duchenne muscular dystrophy: functional ischemia reproduces its characteristic lesions. Science, 172, 1143–1145.
    Louboutin, J. P., Rouger, K., Tinsley, J. M., et al. (2001). iNOS expression in dystrophinopathies can be reduced by somatic gene transfer of dystrophin or utrophin. Mol Med, 7, 355–364.
    Bredt, D., & Snyder, S. (1994). Nitric oxide: a physiologic messenger molecule. Ann Rev Biochem, 63, 175–195.
    Kobzik, L., Reid, M., Bredt, D., et al. (1994). Nitric oxide in skeletal muscle. Nature, 372, 546–548.
    Ischiropoulos, H. (1998). Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch Biochem Biophys, 356, 1–11.
    Wehling, M., Spencer, M. J., & Tidball, J. G. (2001). A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. J Cell Biol, 155, 123–131.
    Gurpur, P. B., Liu, J., Burkin, D. J., et al. (2009). Valproic acid activates the PI3K/Akt/mTOR pathway in muscle and ameliorates pathology in a mouse model of Duchenne muscular dystrophy. Am J Pathol, 174, 999–1008.
    Chung, J., Grammer, T. C., Lemon, K. P., et al. (1994). PDGF- and insulin-dependent pp 70S6k activation mediated by phosphatidylinositol-3-OH kinase. Nature, 370, 71–75.
    Orlic, D., Kajstura, J., Chimenti, S., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701–705.
    Orlic, D., Kajstura, J., Chimenti, S., et al. (2001). Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA, 98, 10344–10349.
    Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105, 1815–1822.
    Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. J Cell Biochem, 98, 1076–1084.
    Tang, Y. L., Zhao, Q., Qin, X., et al. (2005). Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg, 80, 229–236.
    Togel, F., Hu, Z., Weiss, K., et al. (2005). Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol, 289, F31–F42.
    Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., et al. (2004). Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 109, 1292–1298.
    Al-Khaldi, A., Al-Sabti, H., Galipeau, J., et al. (2003). Therapeutic angiogenesis using autologous bone marrow stromal cells: improved blood flow in a chronic limb ischemia model. Ann Thorac Surg, 75, 204–209.
    Nagaya, N., Fujii, T., Iwase, T., et al. (2004). Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol, 287, H2670–H2676.
    Nagaya, N., Kangawa, K., Itoh, T., et al. (2005). Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation, 112, 1128–1135.
    Wehling-Henricks, M., Lee, J. J., & Tidball, J. G. (2004). Prednisolone decreases cellular adhesion molecules required for inflammatory cell infiltration in dystrophin-deficient skeletal muscle. Neuromuscul. Disord., 14, 483–490.
    Messina, S., Bitto, A., Aguennouz, M., et al. (2006). Nuclear factor kappa-B blockade reduces skeletal muscle degeneration and enhances muscle function in Mdx mice. Exp Neurol, 198(1), 234–241.
    Tidball, J. G., & Wehling-Henricks, M. (2007). Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J Physiol., 578(Pt 1), 327–336.
    Vetrone, S. A., Montecino-Rodriguez, E., Kudryashova, E., et al. (2009). Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-beta. J Clin Invest., 119(6), 1583–1594.
    Barbul, A., Lazarou, S. A., Efron, D. T., et al. (1990). Arginine enhances wound healing and lymphocyte immune responses in humans. Surgery, 108, 331–337.
    Wehling-Henricks, M., Jordan, M. C., Gotoh, T., et al. (2010). Arginine metabolism by macrophages promotes cardiac and muscle fibrosis in mdx muscular dystrophy. PLoS One., 5(5), e10763.