Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

The concept of quasi-integrability for modified non-linear Schrödinger models (2012)

  • Authors:
  • USP affiliated authors: FERREIRA, LUIZ AGOSTINHO - IFSC
  • USP Schools: IFSC
  • DOI: 10.1007/JHEP09(2012)103
  • Subjects: FÍSICA TEÓRICA; TEORIA DE CAMPOS; MODELOS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/JHEP09(2012)103 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green
    Versões disponíveis em Acesso Aberto do: 10.1007/JHEP09(2012)103 (Fonte: Unpaywall API)

    Título do periódico: Journal of High Energy Physics

    ISSN: 1029-8479

    • Melhor URL em Acesso Aberto:
      • Página do artigo
      • Link para o PDF
      • Evidência: oa repository (via OAI-PMH title and first author match)
      • Licença:
      • Versão: submittedVersion
      • Tipo de hospedagem: repository


    • Outras alternativas de URLs em Acesso Aberto:
        • Página do artigo
        • Link para o PDF
        • Evidência: oa repository (via OAI-PMH title and first author match)
        • Licença:
        • Versão: submittedVersion
        • Tipo de hospedagem: repository


    Informações sobre o Citescore
  • Título: Journal of High Energy Physics

    ISSN: 1126-6708

    Citescore - 2017: 4.24

    SJR - 2017: 1.227

    SNIP - 2017: 1.083


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    IFSC89019987PROD019987
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      FERREIRA, Luiz Agostinho; LUCHINI, G.; ZAKRZEWSKI, Wojtek J. The concept of quasi-integrability for modified non-linear Schrödinger models. Journal of High Energy Physics, Heidelberg, Springer, v. 2012, n. 9, p. 103-1-103-34, 2012. Disponível em: < http://dx.doi.org/10.1007/JHEP05(2011)130 > DOI: 10.1007/JHEP09(2012)103.
    • APA

      Ferreira, L. A., Luchini, G., & Zakrzewski, W. J. (2012). The concept of quasi-integrability for modified non-linear Schrödinger models. Journal of High Energy Physics, 2012( 9), 103-1-103-34. doi:10.1007/JHEP09(2012)103
    • NLM

      Ferreira LA, Luchini G, Zakrzewski WJ. The concept of quasi-integrability for modified non-linear Schrödinger models [Internet]. Journal of High Energy Physics. 2012 ; 2012( 9): 103-1-103-34.Available from: http://dx.doi.org/10.1007/JHEP05(2011)130
    • Vancouver

      Ferreira LA, Luchini G, Zakrzewski WJ. The concept of quasi-integrability for modified non-linear Schrödinger models [Internet]. Journal of High Energy Physics. 2012 ; 2012( 9): 103-1-103-34.Available from: http://dx.doi.org/10.1007/JHEP05(2011)130

    Referências citadas na obra
    N.J. Zabusky and M.D. Kruskal, Interaction of ‘solitons’ in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15 (1965) 240 [ INSPIRE ].
    E. Fermi, J.R. Pasta and S. Ulam, Studies of non linear problems, Los Alamos Scientific Laboratory Report, Document LA-1940 (1955), unpublished.
    P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math. 21 (1968) 467 [ INSPIRE ].
    V.E. Zakharov and A.B. Shabat, Exact theory of two-dimensional selffocusing and one-dimensional selfmodulation of waves in nonlinear media, Zh. Exp. Teor. Fiz. 61 (1971) 118 [Sov. Phys. JETP 34 (1972) 62] [ INSPIRE ].
    L.D. Faddeev and L.A. Takhtajan, Hamiltonian methods in the theory of solitons, Springer Series in Soviet Mathematics, Springer, Berlin Germany (1987) [ INSPIRE ].
    O. Babelon, D. Bernard and M. Talon, Introduction to classical integrable systems, Cambridge University Press, Cambridge U.K. (2003).
    L.A. Ferreira and W.J. Zakrzewski, The concept of quasi-integrability: a concrete example, JHEP 05 (2011) 130 [ arXiv:1011.2176 ] [ INSPIRE ].
    D. Bazeia, L. Losano, J.M.C. Malbouisson and R. Menezes, Classical behavior of deformed sine-Gordon models, Physica D 237 (2008) 937 [ arXiv:0708.1740 ] [ INSPIRE ].
    V.G. Drinfeld and V.V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, J. Sov. Math. 30 (1984) 1975 [ INSPIRE ].
    V.G. Drinfeld and V.V. Sokolov, Equations of Korteweg-de Vries type and simple Lie algebras, Sov. Mat. Dokl. 23 (1981) 457.
    D.I. Olive and N. Turok, Local conserved densities and zero curvature conditions for Toda lattice field theories, Nucl. Phys. B 257 (1985) 277 [ INSPIRE ].
    D.I. Olive and N. Turok, The Toda lattice field theory hierarchies and zero curvature conditions in Kac-Moody algebras, Nucl. Phys. B 265 (1986) 469 [ INSPIRE ].
    H. Aratyn, L.A. Ferreira, J.F. Gomes and A.H. Zimerman, The conserved charges and integrability of the conformal affine Toda models, Mod. Phys. Lett. A 9 (1994) 2783 [ hep-th/9308086 ] [ INSPIRE ].
    L.A. Ferreira and W.J. Zakrzewski, A simple formula for the conserved charges of soliton theories, JHEP 09 (2007) 015 [ arXiv:0707.1603 ] [ INSPIRE ].
    B. Luther-Davies and Y.S. Kivshar, Dark optical solitons: physics and applications, Phys. Rept. 298 (1998) 81.
    G.P. Agrawal, Nonlinear fiber optics: quantum electronics — principles and applications, Academic Press (1989).
    C. Sulem and P.-L. Sulem, The nonlinear Schrödinger equation: self-focusing and wave collapse, Springer-Verlag (1999).