Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Parametric resonances in a base-excited double pendulum (2012)

  • Authors:
  • USP affiliated authors: SARTORELLI, JOSE CARLOS - IF
  • USP Schools: IF
  • DOI: 10.1007/s11071-012-0378-2
  • Subjects: RESSONÂNCIA PARAMAGNÉTICA
  • Language: Inglês
  • Imprenta:
  • Source:
    • Título do periódico: NONLINEAR DYNAMICS
    • Volume/Número/Paginação/Ano: v.69, n.4, p. 1679-1692, mar.2012
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/s11071-012-0378-2 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: NONLINEAR DYNAMICS

    ISSN: 0924-090X

    Citescore - 2017:

    SJR - 2017:

    SNIP - 2017:


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SARTORELLI, J C; LACARBONARA, W. Parametric resonances in a base-excited double pendulum. NONLINEAR DYNAMICS, Dordrecht, v. 69, n. 4, p. 1679-1692, 2012. DOI: 10.1007/s11071-012-0378-2.
    • APA

      Sartorelli, J. C., & Lacarbonara, W. (2012). Parametric resonances in a base-excited double pendulum. NONLINEAR DYNAMICS, 69( 4), 1679-1692. doi:10.1007/s11071-012-0378-2
    • NLM

      Sartorelli JC, Lacarbonara W. Parametric resonances in a base-excited double pendulum. NONLINEAR DYNAMICS. 2012 ;69( 4): 1679-1692.
    • Vancouver

      Sartorelli JC, Lacarbonara W. Parametric resonances in a base-excited double pendulum. NONLINEAR DYNAMICS. 2012 ;69( 4): 1679-1692.

    Referências citadas na obra
    Faraday, M.: On a peculiar class of acoustical figures; and on certain forms assumed by a group of particles upon vibrating elastic surfaces. Philos. Trans. R. Soc. Lond. A 121, 299–340 (1831)
    Strutt, W.: On maintained vibrations. Philos. Mag. A 15, 229–232 (1883)
    TerHarr, D., Kapitza, P.L. (eds.): Collected Papers of P.L. Kapitza. Pergamon Press, New York (1965), pp. 714–726
    Bergé, P.: Order Within Chaos. Wiley, Paris (1984)
    Smith, H.J., Blackburn, J.A., Grønbech-Jensen, N.: Stability and Hopf bifurcations in an inverted pendulum. Am. J. Phys. 60, 903–908 (1992)
    Sanjuán, M.A.F.: Using nonharmonic forcing to switch the periodicity in nonlinear systems. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 58, 4377–4382 (1998)
    Stachowiak, T., Okada, T.: A numerical analysis of chaos in the double pendulum. Chaos Solitons Fractals 29, 417–422 (2006)
    Awrejcewicz, J., Kudra, G., Lamarque, C.H.: Numerical prediction and experimental observation of triple pendulum dynamics. Int. J. Bifurc. Chaos Appl. Sci. Eng. 14, 4191–4213 (2004)
    Miles, J.: Parametric excitation of an internally resonant double pendulum. Z. Angew. Math. Phys. 36, 337–345 (1985)
    Skeldon, A.C.: Dynamics of a parametrically excited double pendulum. Physica D 75, 541–558 (1994)
    Agafonov, S.A., Shcheglov, G.A.: On the stabilization of a double pendulum acted upon by a follower force by means of parametric excitation. Mech. Solids 38, 27–35 (2003)
    El-Bassiouny, A.F.: Parametric excitation of internally resonant double pendulum. Phys. Scr. 76, 173–186 (2007)
    Kholostova, O.V.: On the motions of a double pendulum with vibrating suspension point. Mech. Solids 44, 184–197 (2009)
    Skeldon, A.C., Mullin, T.: Mode interaction in a double pendulum. Phys. Lett. A 166, 225–229 (1992)
    Jäckel, P., Mullin, T.: A numerical and experimental study of codimension 2 points in a parametrically excited double pendulum. Philos. Trans. R. Soc. Lond. A 454, 3257–3274 (1998)
    Nagamine, T., Sato, T., Koseki, Y.: Stable rotation of a parametrically excited double pendulum. J. Vib. Control 13, 111–124 (2007)
    Liang, Y., Feeny, B.F.: Parametric identification of a chaotic base-excited double pendulum experiment. Nonlinear Dyn. 52, 181–197 (2008)
    Jensen, J.S.: Non-linear dynamics of the follower-loaded double pendulum with added support-excitation. J. Sound Vib. 215, 125–142 (1998)
    Blekhman, I.I.: Vibrational Mechanics—Nonlinear Dynamic Effects, General Approach, Applications. World Scientific, Singapore (2000)
    Yu, P., Bi, Q.: Analysis of non-linear dynamics and bifurcations of a double pendulum. J. Sound Vib. 217, 691–736 (1998)
    Kholostova, O.V.: On the motions of a double pendulum with vibrating suspension point. Mech. Solids 44, 184–197 (2009)
    Kholostova, O.V.: Stability of periodic motions of the pendulum with a horizontally vibrating suspension point. Mech. Solids 32, 29–33 (1997)
    Bardin, B.S., Markeyev, A.P.: The stability of the equilibrium of a pendulum for vertical oscillations of the point of suspension. Int. J. Appl. Math. Mech. 59, 879–886 (1995)
    Nayfeh A.H.: Parametric excitation of two internally resonant oscillators. J. Sound Vib. 119, 95–109 (1987)
    Nayfeh, A.H., Pai, F.: Non-linear non-planar parametric responses of an inextensional beam. Int. J. Non-Linear Mech. 24, 139–158 (1989)
    Lacarbonara, W., Antman, S.S.: Parametric instabilities of the radial motions of nonlinearly viscoelastic shells subject to pulsating pressures. Int. J. Non-Linear Mech. (2011, submitted)
    Formalõskii, A.M.: Global stabilization of a double inverted pendulum with control at the hinge between the links. Mech. Solids 43, 687–697 (2008)
    Lacarbonara, W., Yabuno, H., Hayashi, K.: Nonlinear cancellation of the parametric resonance in elastic beams: Theory and experiment. Int. J. Solids Struct. 44, 2209–2224 (2007)
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)
    Dankowicz, H., Schilder, F.: An extended continuation problem for bifurcation analysis in the presence of constraints. J. Comput. Nonlinear Dyn. 6, 031003 (2011)
    Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New York (1995)